Brandi et al.
SCHEME 1
CHART 1
alkanes are accordingly oxidized under mild conditions.
The key reactive intermediate in these procedures is the
phthalimide-N-oxyl radical (PINO), formed in the pre-
liminary interaction of HPI with O2 and a Co(II) salt, as
delineated in Scheme 1.8-10
SCHEME 2
The synthetic value of the procedure has prompted
studies on the reactivity features of PINO.10 In recent
investigations, PINO was generated from HPI by the
Pb(OAc)4 oxidant and the resulting >N-O• species
characterized by UV-vis spectrophotometry.11 Kinetic
studies of H-abstraction from suitable C-H- or O-H-
containing substrates have provided fundamental infor-
mation upon the reactivity of PINO toward organic
compounds.11,12 Knowledge of the energy of the NO-H
bond of HPI itself,9 as well as that of aryl-substituted
HPI’s, from EPR equilibration measurements, and of
their redox potentials from cyclic voltammetry12 has
provided additional information upon the reactivity
features of this remarkable oxidizing system.
Concerns about environmental pollution urge substitu-
tion of old synthetic procedures with “green” alterna-
tives.4c,d Catalytic systems enabling the activation of di-
oxygen for homogeneous oxidations represent one effort
in this direction.4 A natural process of fundamental im-
portance is the oxidative delignification of rotten wood
carried out by white-rot fungi.13 A similar process would
represent a dream for the paper-making industry that
conventionally performs the delignification of wood pulp
by utilizing chlorine-based polluting chemicals.14 Deligni-
fication with fungal enzymes might lead to novel, environ-
ment-respectful techniques.13a Attempts in this direction
have been reported,13,15 but the degradation of difficult
to oxidize residues of lignin, for example, the benzylic
alcohol groups, may require the widening of the sub-
strate range of some enzymes by adding mediator com-
pounds.13,15,16 Hydroxylamines, such as HPI or 1-hydroxy-
benzotriazole (HBT) or violuric acid (VLA) (Chart 1), have
recently shown their proficiency in mediating the phenol
oxidase laccase toward the aerobic oxidation of lignin
models having the structure of benzyl alcohols.13c,15a-c,16
Laccase, having a redox potential around 0.6-0.8 V
vs NHE,16c could never oxidize benzylic substrates en-
dowed with redox potentials g1.4 V vs NHE by electron
abstraction.17 In contrast, laccase/mediator systems have
shown promises even in the degradative oxidation of
wood pulp itself.18 The nitroxyl radical intermediate from
these >N-OH mediators, generated by laccase, performs
as the active species and promotes the radical cleavage
of benzylic C-H bonds, thereby extending the (indirect)
oxidation capability of laccase toward nonphenolic
substrates.17a This lead us back to the studies of the
H-abstraction reactivity by >N-O• species. We have
recently reported on the first generation of the aminoxyl
radical from HBT (dubbed BTNO) by monoelectronic
oxidation with cerium(IV) ammonium nitrate (i.e., CAN)
in MeCN solution (Scheme 2).19
(6) (a) Otamiri, T.; Sjodahl, R. Cancer 1989, 64, 422-425. (b)
Berliner, J. A.; Heinecke, J. W. Free Radical Biol. Med. 1996, 20, 707-
727. (c) Chatgilialoglu, C.; Ferreri, C. Acc. Chem. Res. 2005, 38, 441-
448.
(7) (a) Sheldon, R. A.; Kochi, J. K. Metal-Catalyzed Oxidations of
Organic Compounds; Academic Press: New York, 1981. (b) The
Activation of Dioxygen and Homogeneous Catalytic Oxidation; Barton,
D. H. R., Martell, A. E., Sawyer, D. T., Eds.; Plenum Press: New York,
1993. (c) Sheldon, R. A.; Arends, I. W. C. E.; ten Brink, G.-J.; Dijksman,
A. Acc. Chem. Res. 2002, 35, 774-781. (d) Whittaker, J. W. Chem. Rev.
2003, 103, 2347-2364.
(8) (a) Iwahama, T.; Yoshino, Y.; Keitoku, T.; Sakaguchi, S.; Ishii,
Y. J. Org. Chem. 2000, 65, 6502-6507. (b) Ishii, Y.; Sakaguchi, S.;
Iwahama, T. Adv. Synth. Catal. 2001, 343, 393-427.
(9) (a) Minisci, F.; Punta, C.; Recupero, F.; Fontana, F.; Pedulli, G.
F. J. Org. Chem. 2002, 67, 2671-2676. (b) Amorati, R.; Lucarini, M.;
Mugnaini, V.; Pedulli, G. F.; Minisci, F.; Recupero, F.; Fontana, F.;
Astolfi, P.; Greci, L. J. Org. Chem. 2003, 68, 1747-1754.
(10) Minisci, F.; Recupero, F.; Cecchetto, A.; Gambarotti, C.; Punta,
C.; Faletti, R.; Paganelli, R.; Pedulli, G. F. Eur. J. Org. Chem. 2004,
109-119.
(11) (a) Koshino, N.; Saha, B.; Espenson, J. H. J. Org. Chem. 2003,
68, 9364-9370. (b) Koshino, N.; Cai, Y.; Espenson, J. H. J. Phys. Chem.
A 2003, 107, 4262-4267. (c) Saha, B.; Koshino, N.; Espenson, J. H. J.
Phys. Chem. A 2004, 108, 425-431. (d) Cai, Y.; Koshino, N.; Saha, B.;
Espenson, J. H. J. Org. Chem. 2005, 70, 238-243.
(12) Annunziatini, C.; Gerini, M. F.; Lanzalunga, O.; Lucarini, M.
J. Org. Chem. 2004, 69, 3431-3438.
A full account of the generation and H-abstraction
reactivity of this radical intermediate toward substrates
containing C-H bonds of suitable energy is presented
here. Because HBT is one of the most efficient mediators
(15) (a) Call, H. P.; Mu¨cke, E. I. J. Biotechnol. 1997, 53, 163-202.
(b) Bourbonnais, R.; Paice, M. G. FEBS Lett. 1990, 267, 99-102. (c)
Bourbonnais, R.; Paice, M. G.; Freiermuth, B.; Bodie, E.; Borneman,
S. Appl. Environ. Microb. 1997, 63, 4627-4632. (d) Gamelas, J. A. F.;
Tavares, A. P. M.; Evtuguin, D. V.; Xavier, A. M. B. J. Mol. Catal. B:
Enzym. 2005, 33, 57-64.
(16) (a) ten Have, R.; Teunissen, P. J. M. Chem. Rev. 2001, 101,
3397-3413. (b) Li, K.; Xu, F.; Eriksson, K.-E. L. Appl. Environ.
Microbiol. 1999, 65, 2654-2660. (c) Xu, F.; Kulys, J. J.; Duke, K.; Li,
K.; Krikstopaitis, K.; Deusse, H.-J.; Abbate, E.; Galinyte, V.; Schneider,
P. Appl. Environ. Microbiol. 2000, 66, 2052-2056. (d) Fabbrini, M.;
Galli, C.; Gentili, P. J. Mol. Catal. B: Enzym. 2002, 16, 231-240. (e)
Baiocco, P.; Barreca, A. M.; Fabbrini, M.; Galli, C.; Gentili, P. Org.
Biomol. Chem. 2003, 1, 191-197.
(17) (a) Galli, C.; Gentili, P. J. Phys. Org. Chem. 2004, 17, 973-
977. (b) Cantarella, G.; Galli, C.; Gentili, P. J. Mol. Catal. B: Enzym.
2003, 22, 135-144.
(18) (a) Barreca, A. M.; Fabbrini, M.; Galli, C.; Gentili, P.; Ljunggren,
S. J. Mol. Catal. B: Enzym. 2003, 26, 105-110. (b) Barreca, A. M.;
Sjo¨gren, B.; Fabbrini, M.; Galli, C.; Gentili, P. Biocatal. Biotrans. 2004,
22, 105-112. (c) Annunziatini, C.; Baiocco, P.; Gerini, M. F.; Lanza-
lunga, O.; Sjo¨gren, B. J. Mol. Catal. B: Enzym. 2005, 32, 89-96.
(19) Galli, C.; Gentili, P.; Lanzalunga, O.; Lucarini, M.; Pedulli, G.
F. Chem. Commun. 2004, 2356-2357.
(13) (a) Kuhad, R. C.; Eriksson, K.-E. L. Microorganisms and
Enzymes Involved in the Degradation of Plant Fiber Cell Wall. In
Biotechnology in the Pulp and Paper Industry (Advances in Biochemical
Engineering Biotechnology); Eriksson, K.-E. L., Ed.; Springer: Berlin,
1997; Chapter 2; Vol. 57. (b) Reid, I. D.; Paice, M. G. FEMS Microb.
Rev. 1994, 13, 369-376. (c) Messerschmidt, A. Multi-Copper Oxidases;
World Scientific: Singapore, 1997.
(14) Roberts, J, C. The Chemistry of Paper; The Royal Society of
Chemistry: Cambridge, 1996.
9522 J. Org. Chem., Vol. 70, No. 23, 2005