C O M M U N I C A T I O N S
Scheme 3 a
a Conditions: (a) BnNH2, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (WSC)‚HCl, HOBt, DMF, 91%; (b) cat. OsO4, NMO, aq THF, rt; (c) NaIO4,
CH2Cl2:H2O (2:1), rt; (d) Ph3PdCHCO2Et, CH2Cl2, reflux; (e) DBU, EtOH; (f) 2 N NaOH, MeOH; (g) AcCl, EtOH, 54% (8 steps); (h) LiBH4, MeOH,
THF, 99%; (i) 70% HClO4, CH2Cl2, rt, 91%; (j) DHP, cat. CSA, 91%; (k) i) LiN(TMS)2, THF, -78 °C, ii) PhNTf2, 87%; (l) 8, PdCl2(dppf), K3PO4, 80 °C,
3 h, 95%; (m) i) H2, 10% Pd-C, MeOH, rt, 1.5 h, 71% (8R-H:8â-H ) 1:5.7), ii) PPTS, EtOH, iii) separation of diastereomers, (iv) DHP, cat. CSA, 69%;
(n) LiBH4, MeOH, THF, 99%; (o) Li, liq. NH3; (p) PhSO2Cl, aq NaHCO3, 80% (2 steps); (q) (Boc)2O, Et3N, cat. DMAP, 98%; (r) DIBALH, CH2Cl2,
toluene; (s) Ac2O, pyridine, 80% (2 steps); (t) p-TsOH, CH2Cl2; (u) 1 N HCl, THF, 87% (2 steps); (v) 2-nitrophenylselenocyanate, n-Bu3P; (w) mCPBA,
aq K2HPO4; (x) TFA, CH2Cl2; (y) 5-hexenoic acid, WSC‚HCl, HOBt, 73% (4 steps); (z) 26 (20 mol %), CH2Cl2, 2 mM, 50 °C, 1.5 h; (aa) 2 N NaOH,
MeOH, rt, 1.5 h, 64% (2 steps); (bb) Dess-Martin periodinane, 80%; (cc) Ph3PdCH2, 72%; (dd) Na, naphthalene; (ee) 5-hexenoic acid, WSC‚HCl, HOBt,
77% (2 steps); (ff) 30 (15 mol %), CH2Cl2, 0.5 mM, 50 °C, 24 h, 26% (24Z), 44% (24E); (gg) Red-Al, toluene, reflux.
) +79.2 (c 0.12, MeOH), in 86% yield (Scheme 3). The same
reduction of (24E)-31 gave (+)-(24E)-nakadomarin A in 63% yield.
Although the H NMR spectrum of synthetic (+)-nakadomarin
spectra for selected compounds (PDF). X-ray crystallographic data in
CIF format. This material is available free of charge via the Internet at
1
A was similar to that of natural (-)-1 reported by Kobayashi, the
vinylic protons in the eight-membered ring and the methylene and
methine protons connected to two tertiary amines of natural (-)-1
References
(1) (a) Kobayashi, J.; Watanabe, D.; Kawasaki, N.; Tsuda, M. J. Org. Chem.
1997, 62, 9236. (b) Kobayashi, J.; Tsuda, M.; Ishibashi, M. Pure Appl.
Chem. 1999, 71, 1123.
(2) Magnier, E.; Langlois, Y. Tetrahedron 1998, 54, 6201.
(3) Baldwin, J. E.; Whitehead, R. C. Tetrahedron Lett. 1992, 33, 2059.
(4) (a) Fu¨rstner, A.; Guth, O.; Rumbo, A.; Seidel, G. J. Am. Chem. Soc. 1999,
121, 11108. (b) Fu¨rstner, A.; Guth, O.; Du¨ffels, A.; Seidel, G.; Liebl, M.;
Gabor, B.; Richard, M. Chem. Eur. J. 2001, 7, 4811. (c) Magnus, P.;
Fielding, M. R.; Wells, C.; Lynch, V. Tetrahedron Lett. 2002, 43, 947.
1
were shifted downfield. Therefore, the H NMR spectra of both
natural and synthetic (+)-1 were measured again in the presence
of HCl under the same conditions by Professors Kobayashi and
Tsuda. Those spectra clearly showed that these compounds were
identical.9 Furthermore, a careful comparison of the specific rotation
[synthetic (+)-nakadomarin A (2HCl salt), 1, [R]20 +45 (c 0.13,
D
(5) Nagata, T.; Nishida, A.; Nakagawa, M. Tetrahedron Lett. 2001, 42, 8345.
MeOH)] showed that the absolute configuration of all stereo centers
in natural 1 [[R]20D -16 (c 0.12, MeOH)] could be assigned to be
R.17
In summary, the first total synthesis of ent-(+)-nakadomarin A
was completed from the readily available chiral 11. The absolute
configuration of natural 1 was assigned to be R. Finally, the
procedure described here provides an access to structural analogues
of nakadomarin A for further study, including biological evaluation.
(6) (a) Uchida, H.; Nishida, A.; Nakagawa, M. Tetrahedron Lett. 1999, 40,
113. (b) Nakagawa, M.; Torisawa, Y.; Uchida, H.; Nishida, A. J. Synth.
Org. Chem., Jpn. 1999, 57, 1004. (c) Nakagawa, M. J. Heterocycl. Chem.
2000, 37, 567.
(7) Fu¨rstner, A. Angew. Chem., Int. Ed. 2000, 39, 3012.
(8) Winkler, J. D.; Axten, J. M. J. Am. Chem. Soc. 1998, 120, 6425.
(9) See the Supporting Information for complete experimental details and
crystallographic, spectroscopic, and analytical data.
(10) The racemic acid 11, which was prepared in >75% yield from com-
mercially available methyl 4-oxopiperidinecarboxylate, was resolved to
give the (R)-11 in 99.6% ee using (+)-cinchonine. The absolute stereo-
chemistry of (R)-11 was determined by X-ray analysis of its cinchoninium
salt.9
Acknowledgment. This research was supported by a Grant-in-
Aid for Scientific Research of Priority Areas (A) “Exploitation of
Multi-Element Cyclic Molecules” from the Ministry of Education,
Culture, Sports, Sciences, and Technology. Financial support from
the Uehara Memorial Foundation is also gratefully acknowledged.
We thank Professors J. Kobayashi and M. Tsuda (Hokkaido
University) for their help in identifying natural 1 and synthetic ent-
1. We also thank Dr. K. Yamaguchi for X-ray analysis and Ms. R.
Hara for MS at the Analytical Center, Chiba University.
(11) Littel, R. D.; Masjedizadeh, M. R.; Wallquist, O.; McLoughlin, J. I. In
Organic Reactions; Paquette, L. A., Ed.; Wiley: New York, 1995; p 315.
(12) (a) Miyaura, N.; Suzuki, A. Chem. ReV. 1995, 95, 2457. (b) Suzuki, A.
Pure Appl. Chem. 1994, 66, 213.
(13) Brands, K. M. J.; DiMichele, L. M. Tetrahedron Lett. 1998, 39, 1677.
(14) Scholl, M.; Ding. S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953.
(15) Humphrey, J. M.; Liao, Y.; Ali, A.; Rein, T.; Wong, Y.-L.; Chen, H.-J.;
Courtney, A. K.; Martin, S. F. J. Am. Chem. Soc. 2002, 124, 8584.
(16) Grubbs, R. H.; Miller, S.; Fu, G. Acc. Res. 1995, 28, 446.
(17) The difference between these values is likely attributable to a difference
in purity or partial racemization of 1 in its biosynthesis. Tsuda, M.; Inaba,
K.; Kawasaki, N.; Honma, K.; Kobayashi, J. Tetrahedron 1996, 52, 2319.
Supporting Information Available: Schemes for the preparation
of 8 and rac-11; experimental procedures and characterization data for
all new compounds reported in Scheme 3; copies of 1H and 13C NMR
JA034464J
9
J. AM. CHEM. SOC. VOL. 125, NO. 25, 2003 7485