10.1002/cphc.201700202
ChemPhysChem
ARTICLE
[3]
[4]
[5]
M. Karas, D. Bachmann, U. Bahr, F. Hillenkamp, Int. J. Mass Spectrom.
1987, 78, 53-68.
Conclusions
Z. Takáts, J.M. Wiseman, B.Gologan, R.G.Cook, Science 2004, 5695,
471-473.
In this work, we have studied the collision-induced fragmentation
of a series of disaccharides in the positive-ion mode. Sugars were
modified by adding an aminoethyl or aminopropyl aglycone on the
reducing end in order to unambiguously localize the additional
proton and make calculations on a limited number of initial
structures. Experiments show that the different disaccharides do
not have a specific fragmentation pattern, which could be used to
easily characterize them in a mixture. However, the differences in
intensities (in particular the cellobiose/maltose derivatives vs the
gentiobiose one) could be eventually further exploited to design a
possible identification strategy, notably by coupling a liquid
chromatograph to the mass spectrometer. On the other hand, the
coupling between experiments and collisional chemical dynamics
simulations provides a valuable tool to identify the structure of the
product ions and to suggest some fragmentation mechanisms.
Finally, experimental and theoretical MS/MS/MS data provide
some insights about the fragments coming only from the [M+H]+
ion and those which could be also obtained by subsequent
fragmentation of the first generation of fragments.
Some of the simulated dissociation mechanisms are consistent
with the results deduced from H/D exchange. On the other hand,
these latter experiments also indicate that alternate dissociation
paths not sampled by the simulations, clearly occur, probably
because of the short time scale of our simulations favoring fast
processes over statistical ones. The fact that we used a relatively
simple semi-empirical Hamiltonian representation for the sugars’
dynamics, can be an additional source of discrepancy with
experiments. This is notably reflected by differences in peaks
intensity and absence in simulations of some of the fragments,
which are due to both small time-scale sampling and the use of
approximate potential energy surface description. Another
possibility is that some of the peaks present in MS/MS are
generated by secondary fragmentation. This is why we performed
collisional dynamics of two primary product ions providing, for the
first time to our knowledge, theoretical MS/MS/MS spectra.
J.B. Fenn, M. Mann, C.K. Meng, S. F. Wong, C. M. Whitehouse, Science
1989, 246, 64-71.
[6]
[7]
P.M. Mayer, C. Poon, Mass Spectrom. Rev. 2009, 28, 608-639.
W. Hoffmann, J. Hofmann, K. Pagel, J. Am. Soc. Mass Spectrom. 2014,
25, 471-479.
[8]
a) B. Paizs, S. Suhai, Mass Spectrom. Rev. 2004, 24, 508-548; b) R.
Aebersold, D.R. Goodlett, Chem. Rev. 2001, 101, 269-295; c) A. G.
Harrison, Mass. Spectrom. Rev. 2009, 28, 640-654; d) A.L. Patrick, N.C.
Polfer, Top. Curr. Chem. 2015, 364, 153-182.
[9]
a) M.A. Fentabil, R. Daneshfar, E.N. Kitova, J.S. Klassen, J. Am. Soc.
Mass Spectrom. 2011, 22, 2171-2178; b) B.J. Bythell, M.T. Abutokaikah,
A.R. Wagoner, S. Guan, J.M. Rabus, J. Am. Soc. Mass Spectrom. 2017,
28, 688-703; c) G.E. Hofmeister, Z. Zhou, J.A. Leary, J. Am. Chem. Soc.
1991, 113, 5964-5970; d) V.N. Reinhold, B.B. Reinhold, C.E. Costello,
Anal. Chem. 1995, 67, 1772-1784.
[10] a) T. Yamagaki, K. Fukui, K. Tachibana, Anal. Chem. 2006, 78, 1015-
1022; b) H. Suzuki, A. Kameyama, K. Tachibana, H. Narimatsu, K. Fukui,
Anal. Chem. 2009, 81, 1108-1120.
[11] a) P. de Sainte Claire, W.L. Hase, J. Phys. Chem. 1996, 100, 8190-8196;
b) J. Liu, K. Song, W.L. Hase, J. Chem. Phys. 2003, 119, 3040-3050; c)
E. Martinez-Nuñez, A. Fernandez-Ramos, S.A. Vazquez, J.M.C.
Marques, M. Xue, W.L. Hase, J. Chem. Phys. 2005, 123, 154311; d) O.
Meroueh, Y. Wang, W.L. Hase, J. Phys. Chem. A 2002, 106, 9983-9992.
[12] a) R. Spezia, J.-Y. Salpin, M.-P. Gaigeot, W.L. Hase, K. Song, J. Phys.
Chem. A 2009, 113, 13853-13862; b) R. Spezia, S.B. Lee, A. Cho, K.
Song, Int. J. Mass Spectrom. 2015, 392, 125-138; c) R. Spezia, J.
Martens, J. Oomens, K. Song, Int. J. Mass Spectrom. 2015, 388, 40-52;
d) D. Ortiz, P. Martin-Gago, A. Riera, K. Song, J.-Y. Salpin, R. Spezia,
Int. J. Mass Spectrom. 2013, 335, 33-44; e) E. Rossich Molina, D. Ortiz,
J.-Y. Salpin, R. Spezia, J. Mass Spectrom. 2015, 50, 1340-1351; f) R.
Spezia, A. Cimas, M.-P. Gaigeot, J.-Y. Salpin, K. Song, W.L. Hase, Phys.
Chem. Chem. Phys. 2012, 14, 11724-11736; g) A. Martin-Somer, M.
Yañez, M.-P. Gaigeot, R. Spezia, J. Phys. Chem. A 2014, 118, 10882-
10893.
[13] D. Ortiz, J.-Y. Salpin, K. Song, R. Spezia, Int. J. Mass Spectrom. 2014,
358, 25-35.
[14] a) A. Ballistreri, G. Montaudo, D. Garozzo, M. Giuffrida, G Impallomeni,
S. Daolio, Rapid Comm. Mass Spectrom. 1989, 3, 302-304; b) J.W.
Dallinga, W. Heerma, Biol. Mass Spectrom. 1991, 20, 215-231; c) J.A.
Carroll, L. Ngoka, C.G. Beggs, C.B. Lebrilla, Anal. Chem. 1993, 65,
1582-1587; d) D. Garozzo, M. Giuffrida, G. Impallomeni, A. Ballistreri, G.
Montaudo, Anal. Chem. 1992, 62, 279-286; e) J.A. Carroll, D. Willard,
C.B. Lebrilla, Anal. Chim. Acta 1995, 307, 431-447; f) B. Mulroney, J.C.
Traeger, B.A. Stone, J. Mass Spectrom. 1995, 30, 1277-1283; g) R.E.
March, C.J. Stadey, Rapid Comm. Mass Spectrom. 2005, 19, 805-812.
[15] a) B. Mulroney, J.B. Peel, J.C. Traeger, J. Mass Spectrom. 1999, 34,
544-553; b) J.-Y. Salpin, J. Tortajada, J. Mass Spectrom. 2004, 39, 930-
941.
Acknowledgements
We thank LabEx Charm3at for supporting through action ANR-11-
IDEX-0003-02. R.S. and J.-Y.S. also thank ANR DynBioReact
(Grant number ANR-14-CE06-0029-01) for supporting.
[16] G. Yang, C. Zhu, L. Zhou, J. Mol. Model. 2016, 22, 104.
[17] S. Feng, C. Bagia, G. Mpourmpakis, J. Phys. Chem. A 2013, 117, 5211-
5219.
Keywords: Tandem mass spectrometry • Chemical dynamics •
Carbohydrates • Fragmentation mechanisms
[18] J. Dahmén, T. Frejd, G. Grönberg, T. Lave, G. Magnusson, G. Noori,
Carbohydr. Res. 1983, 116, 303-307.
[19] a) E. F. V. Scriven, K. Turnbull, Chem. Rev. 1988, 88, 297-368; b) S. G.
Alvarez, M. T. Alvarez, Synthesis 1997, 413-414; c) K. Yamamoto, T.
Bruun, J. Y. Kim, L. Zhang, M. Lautens, Org. Lett. 2016, 18, 2644-2647.
[20] a) G. Zemplén, E. Pascu, Ber. Dtsch. Chem. Ges. 1929, 62, 1613-1614;
b) T. K. Lindhorst, in Essentials of Carbohydrate Chemistry and
Biochemistry Eds.: Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim,
2007.
[1]
[2]
a) R.A. Dwek, Chem. Rev. 1996, 96, 683-720; b) I. Bucior, M.M. Burger,
Curr. Opin. Struct. Biol. 2004, 14, 631–637; c) K. Ohtsubo, J.D. Marth,
Cell 2006, 126, 855–867; d) G. W. Hart, R. J. Copeland, Cell 2010, 143,
672–676.
H.R. Morris, M.Panico, M.Barber, R.S.Bordoli, R.D.Sedgwick, A.Tyler,
Biochem. Biophys. Res. Commun. 1981, 101, 623-631.
12
This article is protected by copyright. All rights reserved.