G. Cannazza et al. / Bioorg. Med. Chem. Lett. 19 (2009) 1254–1257
1257
Cl
SO2NHR
SO2Cl
SO2NHR
Cl
Cl
i
ii
NO2
NH2
NO2
Scheme 2. Reagents and conditions: (i) methylamine, ethylamine or propylamine for 3, 4, and 5, respectively; (ii) Fe, HCl.
Acknowledgements
Cl
SO2NH2
Cl
Cl
SO2NH2
NHR
i
This work was support in part by funding from the Intramural
Research Program of the National Institute on Aging/NIH.
A. Supplementary data
Scheme 3. Reagents and conditions: (i) methylamine, ethylamine, propylamine or
isopropylamine for 6, 7, 8, and 9, respectively,
D
.
Supplementary data associated with this article can be found, in
References and notes
Table 2
Variation of KA-evoked currents induced by IDRA21 (1) and by 2-aminosulfonamide
derivatives 2–16
1. Krogsgaard-Larsen, P.; Ebert, B.; Lund, T. M.; Brauner-Osborne, H.; Slk, F. A.;
Johansen, T. N.; Brehm, L.; Madsen, U. Eur. J. Med. Chem. 1996, 31, 515.
2. Excitatory Amino Acid Receptors. Design of Agonists and Antagonists; Krogsgaard-
Larsen, P., Hansen, J. J., Eds.; Ellis Horwood: Chichester, 1992.
3. The NMDA Receptor; Collingridge, G. L., Watkins, J. C., Eds.; Oxford University
Press: Oxford, 1994.
4. Bliss, T. V. P.; Collingridge, G. L. Nature 1993, 361, 31.
5. Nagarajan, N.; Quast, C.; Boxall, A. R.; Shahid, M.; Rosenmund, C.
Neuropharmacology 2001, 41, 650.
6. Vyklicky, L.; Patneau, D. K.; Mayer, M. L. Neuron 1991, 7, 971.
7. Lynch, G. Curr. Opin. Pharmacol. 2004, 4, 4.
8. Ito, I.; Tanabe, S.; Khoda, A.; Sugiyama, H. J. Physiol. 1990, 424, 533.
9. Arai, A.; Kessler, M.; Xiao, P.; Ambros-Ingerson, J.; Rogers, G.; Lynch, G. Brain
Res. 1994, 638, 343.
Compound
Variation of
Compound
Variation of
KA current, %
KA current, %
1
2
3
4
5
6
7
8
80 17
9
32
À5
8
5
5
11
23
5
2
11
10
11
12
13
14
15
16
12 11
35 11
4
5
À5
À8
À6
7
2
5
3
3
69 14
91 13
80 13
10. Yamada, K. A.; Tang, C. M. J. Neurosci. 1993, 13, 3904.
11. Pirotte, B.; Podona, T.; Diouf, O.; de Tullio, P.; Lebrun, P.; Dupont, L.; Somers, F.;
Delarge, J.; Morain, P.; Lestage, P.; Lepagnol, J.; Spedding, M. J. Med. Chem. 1998,
41, 2946.
12. Bertolino, M.; Baraldi, M.; Parenti, C.; Braghiroli, D.; DiBella, Maria; Vicini, S.;
Costa, E. Receptors Channels 1993, 1, 267.
13. Impagnatiello, F.; Oberto, A.; Longone, P.; Costa, E.; Guidotti, A. Proc. Natl. Acad.
Sci. U.S.A. 1997, 94, 7053.
14. Thompson, D. M.; Guidotti, A.; Di Bella, M.; Costa, E. Proc. Natl. Acad. Sci. U.S.A.
1995, 92, 7667.
15. Zivkovic, I.; Thomson, D. M.; Bertolino, M.; Uzunov, D.; Di Bella, M.; Costa, E.;
Guidotti, A. J. Pharmacol. Exp. Ther. 1994, 272, 300.
16. Arai, A.; Guidotti, A.; Costa, E.; Lynch, G. Neuroreport 1996, 7, 2211.
17. Puia, G.; Losi, G.; Razzini, G.; Braghiroli, D.; Di Bella, M.; Baraldi, M. Prog.
Neuropsychopharmacol. Biol. Psychiatry 2000, 24, 1007.
18. Yamada, K. A. Neurobiol. Dis. 1998, 5, 67.
19. Braghiroli, D.; Puia, G.; Cannazza, G.; Tait, A.; Parenti, C.; Losi, G.; Baraldi, M. J.
Med. Chem. 2002, 45, 2355.
20. Buccafusco, J. J.; Weiser, T.; Winter, K.; Klinder, K.; Terry, A. V.
Neuropharmacology 2004, 46, 10.
21. Cannazza, G.; Braghiroli, D.; Baraldi, M.; Parenti, C. J. Pharm. Biomed. Anal. 2000,
23, 117.
22. Cannazza, G.; Braghiroli, D.; Tait, A.; Baraldi, M.; Parenti, C.; Lindner, W.
Chirality 2001, 13, 94.
23. Cannazza, G.; Carrozzo, M. M.; Braghiroli, D.; Parenti, C. J. Chromatogr. A 2008,
24. Uzunov, D. P.; Zivkovich, I.; Pirkle, W. H.; Costa, E.; Guidotti, A. J. Pharm. Sci.
1995, 84, 937.
25. Tait, A.; Parenti, C.; Zanoli, P.; Veneri, C.; Truzzi, C.; Brandoli, C.; Baraldi, M.; Di
Bella, M. Farmaco 1993, 48, 1463.
26. Parenti, C.; Costantino, L.; Di Bella, M.; Raffa, L.; Baggio, G. G.; Zanoli, P. Arch.
Pharm. 1985, 318, 903.
27. Girard, Y.; Atkinson, J. G.; Rokach, J. J. Chem. Soc., Perkin Trans. 1: Org. Bioorg.
Chem. 1979, 1043.
28. Cannazza, G.; Parenti, C.; Lindner, W.; Puia, G.; Baraldi, M.; Braghiroli, D.; Tait,
A. WO02/089734, 2002.
10) or its substitution at C5 with a nitro or sulfamoyl group (com-
pounds 14 and 15) resulted in a loss of activity. A chlorine or meth-
oxy group in position
4 (compounds 11 and 13) leads to
compounds without positive modulator activity on AMPA receptor.
Chlorine atom at the meta position should not produce significant
inductive effect on the sulfamoyl group (compound 11 is less ac-
tive than 2 and compound 12 is as active as 2). On the other hand,
the chlorine groups can form hydrogen bond, have some hydro-
phobic characteristics and are bulky, thus, one should assume that
this substituent at C5 helps to position the compounds within the
active site of the molecule. The lack of activity of compounds 13–
16 supports this assumption.
The results of this study suggest that in vivo IDRA21 (1) is rap-
idly hydrolyzed to 2-amino-5-chlobenzensulfonamide (2), which
display in vitro biological activity similar to that of IDRA21. Taking
2-amino-5-chlobenzensulfonamide (2) as the lead compound, a
novel class of AMPA positive allosteric modulators has been pre-
pared, in which compounds 7 and 8 had the highest biological
activity. The analysis of the relationship between the structures
of the synthesized compounds and their biological activity has
indicated structural features that may be manipulated to increase
biological activity. This possibility is currently being investigated
and will be expanded and confirmed. The objective will be the
development of new lead drug candidates for the treatment of cog-
nitive deficits.