Syn th esis of â-Su bstitu ted r-Am in o Acid s w ith Use of
Ir id iu m -Ca ta lyzed Asym m etr ic Allylic Su bstitu tion
Takatoshi Kanayama, Kazumasa Yoshida, Hideto Miyabe, Tetsutaro Kimachi, and
Yoshiji Takemoto*
Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, J apan, and
Faculty of Pharmaceutical Sciences, Mukogawa Women’s University, 11-68 Koshien Kyuban-cho,
Nishinomiya 663-8179, J apan
takemoto@pharm.kyoto-u.ac.jp
Received May 14, 2003
The asymmetric synthesis of â-substituted R-amino acids with use of iridium-catalyzed allylic
substitution was described. The Ir-catalyzed allylic substitution of diphenylimino glycinate with
allylic phosphates proceeded smoothly even at 0 °C and gave branch products with high
enantioselectivity (up to 97% ee), when chiral bidentate phosphite bearing the 2-ethylthioethyl
group was employed. In addition, both diastereomers of the branch products were synthesized
stereoselectively by simply switching the base employed. These methods were also applied to the
asymmetric synthesis of quaternary R-amino acids.
SCHEME 1. Tr a n sition Meta l-Med ia ted
Asym m etr ic Allylic Su bstitu tion
In tr od u ction
The transition metal-catalyzed asymmetric allylic sub-
stitution is a useful reaction in organic synthesis.1 Since
the allylic alkylation with dialkyl malonates has been
intensively studied, good yields and high enantioselec-
tivities can now be obtained with a proper combination
of a transition metal and a chiral ligand.2-5 In contrast
to the symmetric C-nucleophiles, the same reaction of
3-substituted allylic alcohol derivatives B with unsym-
metrical C-nucleophiles A is a tough and challenging
task, because both regio- and diastereoselectivities as
well as enantioselectivity should be controlled to give the
desired stereoisomers (Scheme 1). Over the past few
* Corresponding author. Fax: 81-075-753-4569.
(1) Recent reviews: (a) Trost, B. M. Chem. Pharm. Bull. 2002, 50,
1. (b) Trost, B. M.; Lee, C. B. In Catalytic Asymmetric Synthesis II;
Ojima, I., Ed.; Wiley-VCH: Weinheim, Germany, 2000; p 593. (c)
Hayashi, T. In Catalytic Asymmetric Synthesis; Ojima, I., Ed.; Wiley-
VCH: Weinheim, Germany, 2000; p 193. (d) Pfaltz, A.; Lautens, M.
Compr. Asymmetric Catal. I-III 1999, 2, 833-884.
(2) (a) Matsushima, Y.; Onitsuka, K.; Kondo, T.; Mitsudo, T.;
Takahashi, S. J . Am. Chem. Soc. 2001, 123, 10405. (b) You, S.-L.; Zhu,
X.-Z.; Luo, Y.-M.; Hou, X.-L.; Dai, L.-X. J . Am. Chem. Soc. 2001, 123,
7471. (c) Helmchen, G.; Pfaltz, A. Acc. Chem. Res. 2000, 33, 336. (d)
Blacker, A. J .; Clarke, M. L.; Loft, M. S.; Mahon, M. F.; Humphries,
M. E.; Williams, J . M. J . Chem. Eur. J . 2000, 6, 353. (e) Hayashi, T. J .
Organomet. Chem. 1999, 576, 195. (f) Pre´toˆt, R.; Pfaltz, A. Angew.
Chem., Int. Ed. Engl. 1998, 37, 323. (g) Williams, J . M. J . Synlett 1996,
705.
(3) (a) Fuji, K.; Kinoshita, N.; Tanaka, K.; Kawabata, T. Chem.
Commun. 1999, 2289. (b) Bartels, B.; Helmchen, G. Chem. Commun.
1999, 741. (c) J anssen, J . P.; Helmchen, G. Tetrahedron Lett. 1997,
38, 8025.
(4) (a) Trost, B. M.; Dogra, K.; Hachiya, I.; Emura, T.; Hughes, D.
L.; Krska, S.; Reamer, R. A.; Palucki, M.; Yasuda, N.; Reider, P. J .
Angew. Chem., Int. Ed. 2002, 41, 1929. (b) Glorius, F.; Neuburger, M.;
Pfaltz, A. Helv. Chim. Acta 2001, 84, 3178. (c) Kaiser, N.-F.; Bremberg,
U.; Larhed, M.; Hallberg, A. Angew. Chem., Int. Ed. 2000, 39, 3596.
(d) Trost, B. M.; Hildbrand, S.; Dogra, K. J . Am. Chem. Soc. 1999,
121, 10416.
years, research has been focused on finding catalysts and
chiral ligands, which favor the formation of branched
chiral products D and E in the allylic substitution of
R-amino esters A with B.6,7 We have already reported
the Pd-mediated asymmetric allylic alkylation of diphe-
nylimino glycinate 1 with several allylic acetates in the
presence of the chiral phase transfer catalyst (PTC) 11
(6) (a) Nakoji, M.; Kanayama, T.; Okino, T.; Takemoto, Y. Org. Lett.
2001, 3, 3329. (b) Chen, G.; Deng, Y.; Gong, L.; Mi, A.; Cui, X.; J iang,
Y.; Choi, M. C. K.; Chan, A. S. C. Tetrahedron: Asymmetry 2001, 12,
1567. (c) You, S.-L.; Hou, X.-L.; Dai, L.-X.; Cao, B.-X.; Sun, J . Chem.
Commun. 2000, 1933. (d) Trost, B. M.; Ariza, X. J . Am. Chem. Soc.
1999, 121, 10727. (e) Kuwano, R.: Ito, Y J . Am. Chem. Soc. 1999, 121,
3236. (f) Hiroi, K.; Hidaka, A.; Sezaki, R.; Imamura, Y. Chem. Pharm.
Bull. 1997, 45, 769. (g) Genet, J .-P.; J uge, S.; Achi, S.; Mallart, S.;
Montes, J . R.; Levif, G. Tetrahedron 1988, 44, 5263.
(7) (a) Nakoji, M.; Kanayama, T.; Okino, T.; Takemoto, Y. J . Org.
Chem. 2002, 67, 7418. (b) Weiss, T. D.; Helmchen, G.; Kazmaier, U.
Chem. Commun. 2002, 1270. (c) Kazmaier, U.; Zumpe, F. L. Eur. J .
Org. Chem. 2001, 4067. (d) Kazmaier, U.; Zumpe, F. L. Angew. Chem.,
Int. Ed. 2000, 39, 802. (e) Kazmaier, U.; Zumpe, F. L. Angew. Chem.,
Int. Ed. 1999, 38, 1468. (f) Trost, B. M.; Ariza, X. Angew. Chem., Int.
Ed. Engl. 1997, 36, 2635. (g) Baldwin, I. C.; Williams, J . M. J .; Beckett,
R. P. Tetrahedron: Asymmetry 1995, 6, 1515.
(5) (a) Lloyd-J ones, G. C.; Pfaltz, A. Angew. Chem., Int. Ed. Engl.
1995, 34, 462. (b) Lehmann, J .; Lloyd-J ones, G. C. Tetrahedron 1995,
51, 8863.
10.1021/jo034638f CCC: $25.00 © 2003 American Chemical Society
Published on Web 07/04/2003
J . Org. Chem. 2003, 68, 6197-6201
6197