A R T I C L E S
Blue et al.
Scheme 1. Preparation of (BINAP)Cu-OTf (1) and
[(BINAP)Cu(NCMe)][PF6] (2)
chemistry of well-defined late transition metal amido complexes
is primarily dominated by systems of the Fe, Co, and Ni
triads.2,3,8,10-12,14-22,26-35 In contrast, the chemistry of copper
complexes that possess nondative heteroatomic ligands is limited
in scope. Copper complexes possessing aryloxide or bridging
oxo ligands have been prepared and studied.36-43 Although an
isolable copper nitrene complex has not been reported, copper
nitrene systems have been implicated as intermediates in olefin
aziridination reactions.44-50 The chemistry of copper amido
complexes is limited to bridging amido ligands and amido
moieties that are incorporated into chelating ligands as well as
the reactivity of poorly defined copper amido complexes.51-57
Although the isolation and reactivity of well-defined monomeric
copper amido complexes have not been described, recent reports
of catalytic reactions that involve C-N bond forming steps
underscore the potential importance of such substrates.58-64 We
report herein the isolation and full characterization of a
monomeric Cu(I) anilido complex as well as initial reactivity
studies of this system.
Results and Discussion
(26) Bryndza, H. E.; Fultz, W. C.; Tam, W. Organometallics 1985, 4, 939-
940.
Synthesis and Characterization of Cu(I) Aniline and
Anilido Complexes. Our strategy to isolate a Cu(I) amido
system was to incorporate a bis-chelating phosphine into the
copper coordination sphere along with a ligand capable of facile
displacement. Along these lines, (BINAP)Cu(OTf) (1) and
[(BINAP)Cu(NtCMe)][PF6] (2) (BINAP ) 2,2′-bis(diphe-
nylphosphino)-1,1′-binaphthyl); OTf ) trifluoromethanesulfonate)
can be prepared by reaction of Cu(I) triflate with BINAP or
[Cu(NCMe)4][PF6] with BINAP, respectively (Scheme 1).
Unfortunately, all efforts to convert the BINAP-copper com-
plexes 1 or 2 to corresponding Cu(I) amido complexes failed.
Reactions of 1 or 2 with (1) lithium or sodium amides, (2)
amines followed by strong bases, or (3) mixtures of amines and
lithium or sodium amide bases resulted in the formation of free
BINAP.
(27) Boncella, J. M.; Villanueva, L. A. J. Organomet. Chem. 1994, 465, 297-
304.
(28) VanderLende, D. D.; Abboud, K. A.; Boncella, J. M. Inorg. Chem. 1995,
34, 5319-5326.
(29) Albe´niz, A. C.; Calle, V.; Espinet, P.; Go´mez, S. Inorg. Chem. 2001, 40,
4211-4216, and references therein.
(30) Cowan, R. L.; Trogler, W. C. Organometallics 1987, 6, 2451-2453.
(31) Glueck, D. S.; Bergman, R. G. Organometallics 1991, 10, 1479-1486.
(32) Rahim, M.; White, C.; Rheingold, A. L.; Ahmed, K. J. Organometallics
1993, 12, 2401-2403.
(33) Rahim, M.; Ahmed, K. J. Organometallics 1994, 13, 1751-1756.
(34) Park, S.; Roundhill, D. M.; Rheingold, A. L. Inorg. Chem. 1987, 26, 3972-
3974.
(35) Koo, K.; Hillhouse, G. L. Organometallics 1996, 15, 2669-2671.
(36) Whittaker, M. M.; Chuang, Y.-Y.; Whittaker, J. W. J. Am. Chem. Soc.
1993, 115, 10029-10035.
(37) Hakansson, M.; Lopes, C.; Jagner, S. Inorg. Chim. Acta 2000, 304, 178-
183.
(38) Jazdzewski, B. A.; Holland, P. L.; Pink, M.; Young, J., V. G.; Spencer, D.
J. E.; Tolman, W. B. Inorg. Chem. 2001, 40, 6097-6107.
(39) Holland, P. L.; Tolman, W. B. Coord. Chem. ReV. 1999, 190-192, 855-
869.
(40) Tolman, W. B. Acc. Chem. Res. 1997, 30, 227-237.
(41) Mahapatra, S.; Halfen, J. A.; Wilkinson, J. A.; Wilkinson, E. C.; Pan, G.;
Wang, X.; Young, J., V. G.; Cramer, C. J.; Que, J., L.; Tolman, W. B. J.
Am. Chem. Soc. 1996, 118, 11555-11574.
Assuming that reduction of Cu(I) was problematic, efforts
to prepare systems with more reducing phosphine ligands were
made. The combination of [Cu(NCMe)4][PF6] and the bispho-
sphine 1,2-bis(di-tert-butylphosphino)ethane (dtbpe) yields [(dt-
bpe)Cu(NCMe)][PF6] (3) in 95% yield after workup (Scheme
2). Complex 3 is characterized by a singlet at 2.33 ppm in the
1H NMR spectrum and resonances at 119.2 and 2.5 ppm in the
13C NMR spectrum due to the coordinated acetonitrile. In
addition, IR spectroscopy reveals νCN ) 2276 cm-1, and the
cyclic voltammogram of complex 3 exhibits a reversible
oxidation at 1.3 V (vs NHE).
(42) Sorrell, T. N. Tetrahedron 1989, 45, 3-68.
(43) Gultneh, Y.; Karlin, K. D. In Progress in Inorganic Chemistry; Lippard,
S. J., Ed.; John Wiley and Sons: New York, 1987; Vol. 35, pp 219-327.
(44) Li, Z.; Conser, K. R.; Jacobsen, E. N. J. Am. Chem. Soc. 1993, 115, 5326-
5327.
(45) Evans, D. A.; Faul, M. M.; Bilodeau, M. T. J. Am. Chem. Soc. 1994, 116,
2742-2753.
(46) Sanders, C. J.; Gillespie, K. M.; Bell, D.; Scott, P. J. Am. Chem. Soc. 2000,
122, 7132-7133.
(47) Halfen, J. A.; Hallman, J. K.; Schultz, J. A.; Emerson, J. P. Organometallics
1999, 18, 5435-5437.
(48) Rovis, T.; Evans, D. A. In Progress in Inorganic Chemistry; Karlin, K.
D., Ed.; John Wiley and Sons: New York, 2001; Vol. 50, pp 1-150.
(49) Li, Z.; Quan, R. W.; Jacobsen, E. N. J. Am. Chem. Soc. 1995, 117, 5889-
5890.
The reaction of complex 3 with LiNHPh followed by
chromatography on silica gel yields the Cu(I) amine complex
[(dtbpe)Cu(NH2Ph)][PF6] (4) (Scheme 2). Complex 4 is char-
acterized by a singlet at 29.8 ppm and a septet at -143.7 ppm
(1JPF ) 714 Hz) in the 31P NMR spectrum. A broad singlet at
(50) Brandt, P.; So¨dergren, M. J.; Andersson, P. G.; Norrby, P.-O. J. Am. Chem.
Soc. 2000, 122, 8013-8020.
(51) Chen, H.; Olmstead, M. M.; Shoner, S. C.; Power, P. P. J. Chem. Soc.,
Dalton Trans. 1992, 451-457.
(52) Hope, H.; Power, P. P. Inorg. Chem. 1984, 23, 936-937.
(53) Power, P. P. Prog. Inorg. Chem. 1991, 39, 75-112.
(54) Gambarotta, S.; Bracci, M.; Floriani, C.; Chiesi-Villa, A.; Guastini, C. J.
Chem. Soc., Dalton Trans. 1987, 1883-1888.
1
5.46 ppm in the H NMR is assigned as the resonance due to
the amine protons. The IR spectrum of 4 exhibits two high-
(55) Tsuda, T.; Miwa, M.; Saegusa, T. J. Org. Chem. 1979, 44, 3734-3736.
(56) Tsuda, T.; Watanabe, K.; Miyata, K.; Yamamoto, H.; Saegusa, T. Inorg.
Chem. 1981, 20, 2728-2730.
energy absorptions corresponding to symmetric and asymmetric
ν
NH at 3345 and 3295 cm-1. A chemically irreversible oxidation
(57) Kitagawa, Y.; Oshima, K.; Yamamoto, H.; Nozaki, H. Tetrahedron Lett.
1975, 22, 1859-1862.
of the amine complex 4 is observed at 1.3 V (vs NHE). Attempts
to deprotonate the amine complex 4 or to isolate the putative
Cu(I) anilido complex from the reaction of 3 and LiNHPh (prior
to column chromatography) resulted in decomposition. The
(58) Klapars, A.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124,
7421-7428.
(59) Kwong, F. Y.; Klapars, A.; Buchwald, S. L. Org. Lett. 2002, 4, 581-584.
(60) Antilla, J. C.; Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124,
11684-11688.
(61) Job, G. E.; Buchwald, S. L. Org. Lett. 2002, 4, 3703-3706.
(62) Lindley, J. Tetrahedron 1984, 40, 1433-1456.
(63) Arterburn, J. B.; Pannala, M.; Gonzalez, A. M. Tetrahedron Lett. 2001,
42, 1475-1477.
(64) Lange, J. H. M.; Hofmeyer, L. J. F.; Hout, F. A. S.; Osnabrug, S. J. M.;
Verveer, P. C.; Kruse, C. G.; Feenstra, R. W. Tetrahedron Lett. 2002, 43,
1101-1104.
9
9436 J. AM. CHEM. SOC. VOL. 125, NO. 31, 2003