3
catalyst was investigated, and the reaction completed in 24 h to
afford (S)‒14a in low selectivity of 44.4:55.6 er (Entry 1 in Table
1).21 The selectivity varies with different P‒stereogenic chiral
catalysts depending on the environment created by the
substituents. When (S)‒8b1 was used, the reaction was slower
and completed in 48 h providing (R)‒14a in 53.0:47.0 er (Entry 2
in Table 1) that is lower than (R)‒15. The lower reactivity and
selectivity are rationalized by the less bulky and electron-
donating methyl group. When bulkier (S)‒8b2 was used, the
reaction gives better reactivity and selectivity. The reaction
completed in 24 h to provide (S)‒14a in 55.5:44.5 er (Entry 3 in
Table 1). Further enhancing the bulkiness of the catalyst by
replacing the phenyl with a t-butyl group in (S)‒8b2, catalyst
(R)‒8b3 provides increased selectivity at 65:35 er (Entry 4 in
Table 1). We then turned our attention to the more congested
catalyst (S)‒8b4. As reported earlier, phosphinamide 7c (R1 =
phenyl, R2 = 2,6-dimethoxy-1,1'-biphenyl) derived P‒stereogenic
chiral Lewis base catalyst-mediated reduction of conjugated
In conclusion, we have developed a new class of Brønsted
acid organocatalysts derived from P‒stereogenic chiral
phosphinamides. These catalysts were successfully applied to
promote the reduction of quinoline derivatives via transfer
hydrogenation. The asymmetric transformation is effected by the
P‒stereogenic chirality and the selectivity is tunable by the
functionality of the substituents on the phosphorous atom. This
class of catalysts has potential as tunable Brønsted acids in terms
of reactivity and selectivity. Further work is to identify more
efficient catalysts by tuning the substituents and the results will
be reported in due course.
References and notes
1. Reviews: (a) Cai, X.-H.; Xie, B. Arkivoc 2013, 264-293; (b) Akiyam, T.
Chem. Rev. 2007, 107, 5744-5758; (c) Cheng, P. H.-Y.; Lagault, C. Y.;
Um, J. M.; Celebi-Olcum, N.; Houk, K. N. Chem. Rev. 2011, 111, 5042-
5137; (d) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Chem. Rev.
2014, 114, 9047-9153; (e) Rueping, M.; Kuenkel, A.; Atodiresei, I.
Chem. Soc. Rev. 2011, 40, 4539-4549; (f) Terada, M. Synthesis 2010,
1929-1982.
ketones provides excellent selectivity.19a
Therefore, when
(S)‒8b4 was used, the selectivity of the reduction was improved
further to afford (S)‒14a in 68:32 er, and the reaction completed
in 36 h.
2. Pellissier, H. Tetrahedron 2008, 64, 10279-10286.
3. McDougal, N. T.; Schaus, C. S. J. Am. Chem. Soc. 2003, 125, 12094-
12095.
Table 1. Enantioselective reduction of 12a to 14a with the new catalysts
Entry
Catalyst (l0 mol%)
Reaction T/ time
Product 14a
er of 14aa
55.6:44.4
53.0:47.0
55.5:44.5
65.0:35.0
68.2:31.8
4. Min, C.; Seidel, D. Chem. Soc. Rev. 2017, 46, 5889-5902.
5. (a) Wenzel, A. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 12964-
12965; (b) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem.
Int. Ed. 2004, 43, 1566-1568; (c) Uraguchi, D.; Terada, M. J. Am. Chem.
Soc. 2004, 126, 5356-5357; (d) Okino, T.; Hoashi, Y.; Takemoto, Y. J.
Am. Chem. Soc. 2003, 125, 12672-12673.
6. (a) Hoashi, Y.; Yabuta, T.; Takemoto, Y. Tetrahedron Lett. 2004, 45,
9185-9188; (b) Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.; Takemoto,
Y. J. Am. Chem. Soc. 2005, 127, 119-125.
7. (a) Hoashi, Y.; Okino, T.; Takemoto, Y. Angew. Chem. Int. Ed. 2005, 44,
4032-4035; (b) Pours, J.; Courant, T.; Bernadat, G.; Iorga, B. I.;
Blanchard, F.; Masson, G. J. Am. Chem. Soc. 2015, 137, 11950−11953.
8. Huang, Y.; Unni, A. K.; Thadani, A. N.; Rawal, V. H. Nature 2003, 424,
146.
9. McDougal, N. T.; Trevellini, W. L.; Rodgen, A. S.; Kliman, L. T.; Schaus,
S. E. Adv. Synth. Catal. 2004, 346, 1231-1240.
10. Uraguchi, D.; Sorimachi, K.; Terada, M. J. Am. Chem. Soc. 2004, 126,
11804-11805.
11. Rueping, M.; Antonchick, A.P. Angew. Chem. Int. Ed. Engl., 2007, 46,
4562–4565.
12. Chauhan, P.; Mahajan, S.; Enders, D. Chem. Rev. 2014, 114, 8807−8864.
13. Gu, Q.; Rong, Z.-Q.; Zheng, C.; Yu, S. L. J. Am. Chem. Soc. 2010, 132,
4056-4057.
o
1
2
3
4
5
(R)‒15
(S)-14
60 C/24 h
o
(S)‒8b1
(R)-14
60 C/48 h
o
(S)‒8b2
(S)-14
60 C/24 h
o
(R)‒8b3
(S)-14
60 C/24 h
o
(S)‒8b4
(S)-14
60 C/36 h
a er was obtained by chiral HPLC analysis
Furthermore, the reduction of 2-aryl substituted quinolines
12b-c was studied. Higher enantioselectivity was observed for
products 14b and 14c with 68:32 er and 71:29 er, respectively,
when catalyst (S)‒8b4 was used (Scheme 4). Similar reactivity
was observed for phosphoric acid (R)‒15, but with lower
selectivity at 56:44 er for 14b and 67:33 er for 14c. The best
selectivity was observed when (R)‒8b3 was applied in the
reduction of 12b and 12c with 72:28 er and 84:16 er,
respectively. The slightly enhanced stereoselectivity for 12b and
12c suggests that both the structure of the substrate and catalyst
might play the roles in the alternating of the transition state of the
14. (a) Yu, J.; Shi, F.; Gong, L.-Z. Acc. Chem. Res. 2011, 44, 1156-1171; (b)
Liang, T.; Zhang, Z.; Antilla, J. C. Angew. Chem. Int. Ed. 2010, 49, 9734-
9736; (c) Meng, S.S.; Liang, Y.; Cao, K. N.; Zou, L.; Lin, X. B.; Yang,
H.; Houk, K. N.; Zheng, W. H. J. Am. Chem. Soc. 2014, 136,
12249−12252; (d) Huang, S.; tzner, L.; De, C. K.; List, B. J. Am.
Chem. Soc. 2015, 137, 3446−3449.
15. (a) Kanpmees, K.; Tolstoluzhsky, N.; Raja, S.; Rueping, M.; Leito, I.
Angew. Chem. Int. Ed. 2013, 52, 11783-011786; (b) Min, C.; Seidel, D.
Chem. Soc. Rev. 2017, 46, 5889-5902.
reduction.
Nevertheless, these results indicate that the
stereoselectivity in the asymmetric transformations can be tuned
by modification of the substituents attached to the P‒stereogenic
center, and therefore, it offers a venue for development of more
efficient phosphinamides as a new class of Brønsted acid
catalysts.
16, (a) Enders, D.; Seppelt, M.; Beck, T. Adv. Synth. Catal. 2010, 352, 1413-
1418; (b) Johnston, J. N. Angew. Chem. Int. Ed. 2011, 50, 2891-2891; (c)
Nakashima, D.; Yamamoto, H. J. Am. Chem. Soc. 2006, 128, 9626-9627;
(d) Rueping, M.; Nachtsheim, B. J.; Ieaesuwan, W.; Atodiresei, I.
Angew. Chem Int. Ed. 2011, 50, 6706-6720; (e) Kaib, P. S. J.; Schreyer,
L.; Sunggi, L.; Properzi, R.; List, B. Angew. Chem. Int. Ed. 2016, 55,
13200 –13203; (f) Sai M.; Yamamoto, H. J. Am. Chem. Soc. 2015, 137,
7091−7094; (g) Terada, M.; Sorimachi, K.; Uraguchi, D. Synlett 2006,
133-136.
17. Gati, W.; Yamamoto, H. Acc. Chem. Res. 2016, 49, 1757-1768.
18. Chen, C. Q.; Xiang, H. Y.; Yang, H. J. Org. Chem, 2018, 83, 12284-
12290.
19. (a) Han, Z. S.; Zhang, L.; Xu, Y.; Sieber, D. J.; Marsini, M. A.; Li, Z.;
Reeves, J. T.; Fandrick, K. R.; Patel, N. D.; Desrosiers, J. D.; Qu, B.;
Chen, A.; Rudzinski, D. M.; Samankumara, L. P.; Ma, S.; Grinberg, N.;
Roschangar, F.; Yee, N.; Wang, G.; Song, J. J.; Senanayake, C. H. Angew.
Chem, Int. Ed. 2015, 54, 5474–5477; (b) (R)‒8b3 was preparped from
secondary phosphibne oxide as described in supporting inforamtion, Han,
Scheme 4. Asymmetric reduction of 12b-c promoted by catalysts
(R)‒8b3 and (S)‒8b4