Solid-State 13C NMR of Retinal in Metarhodopsin II
A R T I C L E S
all-trans configuration and deprotonation of the PSB rapidly
converts the chromophore from an inverse agonist to a full
agonist. Using solid-state 13C and 15N NMR, we report on the
structure and environment of the all-trans retinal unprotonated
Schiff base (SB) chromophore in metarhodopsin II (Meta II),
the photoactivated state of the rhodopsin, and describe how the
all-trans retinal molecule functions as the agonist for rhodopsin
activation.
The C6-C7 bond divides the plane containing the ꢀ-ionone
ring from the two planes containing the retinylidene chain. In
bacteriorhodopsin, Harbison et al.17 used three independent
NMR measurements (the 13C5 chemical shift, the 13C8 chemical
shift, and the 13C18 T1 relaxation time) to establish a 6-s-trans
conformation of the ꢀ-ionone ring about the C6-C7 single bond.
On the basis of a number of retinal derivatives,17 the T1
relaxation times were observed to be on the order of seconds
for C18 methyl groups in a planar 6-s-trans conformation due
primarily to the steric interaction between the C18 methyl group
and the proton on C7. On the other hand, the T1 relaxation time
for the C18 methyl group in a skewed 6-s-cis conformation was
found to be much shorter, on the order of milliseconds.
On the basis of 13C chemical shift measurements, we
originally assigned the retinal C6-C7 conformation in rhodopsin
as 6-s-cis.18 However, the assignment was subsequently chal-
lenged by experimental19 and computational20 studies. More
recently, several studies have revisited the C6-C7 single bond
conformation.21-24 However, to date, the distinctive relaxation
measurements described for bacteriorhodopsin have not been
repeated on rhodopsin or its photoreaction intermediates.
Much less is known about the conformation of the retinal in
the active Meta II intermediate than in the inactive, dark state
of rhodopsin. The crystal structure of a photoactivated inter-
mediate of rhodopsin having an unprotonated Schiff base has
been reported.25 However, the diffraction data are of low
resolution for both the dark state and the photointermediate,
making it difficult to establish how the chromophore or the
receptor changes structure upon illumination. In contrast, solid-
state NMR spectroscopy is well suited for structural studies that
target specific regions of membrane proteins in native membrane
environments. High-resolution magic angle spinning (MAS)
NMR methods have been used to investigate ligand conforma-
tion in ligand-activated GPCRs, such as the histamine26 and
the neurotensin receptors,27 as well as the structure of the retinal-
containing membrane proteins.28,29
The retinal chromophore in the dark state of rhodopsin can
be conceptually divided into three distinct planes broken by the
C6-C7 and the C11dC12-C13 bonds. These planes are twisted
relative to one another to fit the retinal PSB chromophore into
a tight receptor binding site.7 Specific packing interactions
between the retinal and protein have two consequences. First,
binding of the 11-cis retinal PSB is responsible for lowering
the basal activity of the apoprotein opsin. For example, the
bound 11-cis retinal restricts the motion of Trp265, a highly
conserved aromatic amino acid on TM helix H6 that rotates
toward the extracellular surface upon receptor activation.8,9
Second, NMR,7,10 crystallographic,11 and computational12 stud-
ies argue that the protein binding site imparts a pretwist about
the C11dC12 bond. The ground-state twist about the C11dC12
bond is thought to be required for the extremely fast and
selective photoreaction to the all-trans conformation of the
chromophore.13
Protein-retinal interactions are also responsible for the high
quantum yield of the 11-cis to all-trans photoreaction. The
quantum yield is controlled in part by Glu113 on TM helix H3,
the counterion for the retinal PSB. Interestingly, Glu113 has
also recently been shown to be responsible for the high quantum
yield in UV-absorbing pigments where the retinal SB is
unprotonated,14 suggesting that Schiff base protonation and
associated π-electron delocalization are not necessary for
maintaining a high quantum yield. A second glutamic acid
residue, Glu181 on the second extracellular loop (EL2), is in
close proximity to the retinal and may also contribute to the
rapid and selective photoisomerization of the C11dC12 double
bond. The side chain of Glu181 is oriented into the retinal
binding site with the glutamate carboxyl group near C12 of the
retinal. The occurrence of a negative charge directed at C12
was first proposed by absorption measurements using dihydro
derivatives of retinal15 and later confirmed by measurement of
the retinal 13C NMR chemical shifts.16
In this Article, we characterize the retinal 13C chemical shifts
in the active Meta II intermediate to address how the all-trans
retinal SB functions as a full agonist for receptor activation.
Comparison of the Meta II chemical shifts with those of the
(17) Harbison, G. S.; Smith, S. O.; Pardoen, J. A.; Courtin, J. M.;
Lugtenburg, J.; Herzfeld, J.; Mathies, R. A.; Griffin, R. G. Biochemistry
1985, 24, 6955–6962.
(18) Smith, S. O.; Palings, I.; Copie, V.; Raleigh, D. P.; Courtin, J.; Pardoen,
J. A.; Lugtenburg, J.; Mathies, R. A.; Griffin, R. G. Biochemistry 1987,
26, 1606–1611.
(5) Zhukovsky, E. A.; Oprian, D. D. Science 1989, 246, 928–930.
(6) Sakmar, T. P.; Franke, R. R.; Khorana, H. G. Proc. Natl. Acad. Sci.
U.S.A. 1989, 86, 8309–8313.
(19) Gro¨bner, G.; Burnett, I. J.; Glaubitz, C.; Choi, G.; Mason, A. J.; Watts,
A. Nature 2000, 405, 810–813.
(7) Struts, A. V.; Salgad, G. F. J.; Tanaka, K.; Krane, S.; Nakanishi, K.;
Brown, M. F. J. Mol. Biol. 2007, 372, 50–66.
(20) Singh, D.; Hudson, B. S.; Middleton, C.; Birge, R. R. Biochemistry
2001, 40, 4201–4204.
(8) Crocker, E.; Eilers, M.; Ahuja, S.; Hornak, V.; Hirshfeld, A.; Sheves,
M.; Smith, S. O. J. Mol. Biol. 2006, 357, 163–172.
(21) Fujimoto, Y.; Ishihara, J.; Maki, S.; Fujioka, N.; Wang, T.; Furuta,
T.; Fishkin, N.; Borhan, B.; Berova, N.; Nakanishi, K. Chem.-Eur. J.
2001, 7, 4198–4204.
(9) Patel, A. B.; Crocker, E.; Reeves, P. J.; Getmanova, E. V.; Eilers,
M.; Khorana, H. G.; Smith, S. O. J. Mol. Biol. 2005, 347, 803–812.
(10) Verdegem, P. J. E.; Bovee-Geurts, P. H. M.; De Grip, W. J.;
Lugtenburg, J.; de Groot, H. J. M. Biochemistry 1999, 38, 11316–
11324.
(22) Spooner, P. J. R.; Sharples, J. M.; Verhoeven, M. A.; Lugtenburg, J.;
Glaubitz, C.; Watts, A. Biochemistry 2002, 41, 7549–7555.
(23) Spooner, P. J. R.; Sharples, J. M.; Goodall, S. C.; Seedorf, H.;
Verhoeven, M. A.; Lugtenburg, J.; Bovee-Geurts, P. H. M.; DeGrip,
W. J.; Watts, A. Biochemistry 2003, 42, 13371–13378.
(24) Salgado, G. F. J.; Struts, A. V.; Tanaka, K.; Fujioka, N.; Nakanishi,
K.; Brown, M. F. Biochemistry 2004, 43, 12819–12828.
(25) Salom, D.; Lodowski, D. T.; Stenkamp, R. E.; Le Trong, I.; Golczak,
M.; Jastrzebska, B.; Harris, T.; Ballesteros, J. A.; Palczewski, K. Proc.
Natl. Acad. Sci. U.S.A. 2006, 103, 16123–16128.
(11) Okada, T.; Sugihara, M.; Bondar, A. N.; Elstner, M.; Entel, P.; Buss,
V. J. Mol. Biol. 2004, 342, 571–583.
(12) Sugihara, M.; Hufen, J.; Buss, V. Biochemistry 2006, 45, 801–810.
(13) Schoenlein, R. W.; Peteanu, L. A.; Wang, Q.; Mathies, R. A.; Shank,
C. V. J. Phys. Chem. 1993, 97, 12087–12092.
(14) Tsutsui, K.; Imai, H.; Shichida, Y. Biochemistry 2007, 46, 6437–6445.
(15) Honig, B.; Dinur, U.; Nakanishi, K.; Baloghnair, V.; Gawinowicz,
M. A.; Arnaboldi, M.; Motto, M. G. J. Am. Chem. Soc. 1979, 101,
7084–7086.
(26) Luca, S.; White, J. F.; Sohal, A. K.; Filippov, D. V.; van Boom, J. H.;
Grisshammer, R.; Baldus, M. Proc. Natl. Acad. Sci. U.S.A. 2003, 100,
10706–10711.
(16) Smith, S. O.; Courtin, J.; de Groot, H.; Gebhard, R.; Lugtenburg, J.
Biochemistry 1991, 30, 7409–7415.
(27) Ratnala, V. R. P.; Kiihne, S. R.; Buda, F.; Leurs, R.; de Groot, H. J. M.;
DeGrip, W. J. J. Am. Chem. Soc. 2007, 129, 867–872.
9
J. AM. CHEM. SOC. VOL. 131, NO. 42, 2009 15161