7706
G. Binot, S. Z. Zard / Tetrahedron Letters 44 (2003) 7703–7706
4-pentenoate provided the corresponding adducts 31,
32, and 33 in 73%, 72%, and 69% yield, respectively. In
all of these examples, the radical addition took place
from the more accessible face exclusively or with a very
high selectivity. The complete exo stereoselectivity in
the case of 33 was shown by its cyclisation into 34
(85%) with sodium hydride in THF thus eliminating the
asymmetric centre bearing the phosphonate group and
simplifying the spectral analysis.
Vol. 1, pp. 167–213; (b) Bellus, D.; Ernst, B. Angew.
Chem., Int. Ed. Engl. 1988, 27, 797–827.
3. (a) Snider, B. B. Chem. Rev. 1988, 88, 793–811; (b)
Mehta, G.; Rao, H. S. P. Synth. Commun. 1985, 15,
991–1000; (c) Brady, W. T. Synthesis 1971, 8415–8422;
(d) Kagan, H. B. Ann. Chim. 1965, 10, 203–212.
4. (a) Lee-Ruff, E.; Maldenova, G. Chem. Rev. 2003, 103,
1449–1484 and references there cited therein; (b) Orr, R.
K.; Calter, M. A. Tetrahedron 2003, 59, 3545–3566; (c)
Nemoto, H.; Fukumoto, K. Synlett 1996, 863–875; (d)
Genicot, C.; Ghosez, L. Tetrahedron Lett. 1992, 33,
7357–7360.
5. (a) Medarde, M.; Lo´pez, J. L.; Morillo, M. A.; Tome´, F.;
Adeva, M.; San Feliciano, A. Tetrahedron Lett. 1995, 36,
8097–8098; (b) Poss, A. J.; Belter, R. K. J. Org. Chem.
1987, 52, 4810–4812; (c) Conia, J.-M.; Gore´, J. Bull. Soc.
Chim. Fr. 1964, 1968–1975; (d) Dowd, P.; Zhang, W. J.
Org. Chem. 1992, 57, 7163–7171.
6. (a) Zard, S. Z. Angew. Chem., Int. Ed. Engl. 1997, 36,
672–685; (b) Quiclet-Sire, B.; Zard, S. Z. Phosphorus,
Sulfur and Silicon 1999, 153-154, 137–154; (c) Zard, S. Z.
In Radicals in Organic Synthesis; Renaud, P.; Sibi, M. P.,
Eds.; Wiley-VCH: Weinheim, 2001; Vol. 1, pp. 90–108.
7. Reuss, R. H.; Hassner, A. J. Org. Chem. 1974, 39,
1785–1787.
The above examples, involving olefinic traps containing
various functional groups, underscore the generality,
efficiency, and simplicity of the xanthate transfer radi-
cal addition. None of these transformations can be
easily accomplished by traditional ionic and
organometallic processes or even by other radical based
methods. The ability to combine the radical addition
with an efficient intramolecular Horner–Emmons olefi-
nation and presumably a variety of other ring forming
reactions opens access to numerous polycyclic frame-
works of some complexity. Finally, the unique chem-
istry of the cyclobutanone ring itself represents a
further tremendous synthetic asset. The strain in the
4-membered ring greatly facilitates a variety of highly
selective transformations such as the Bayer–Villiger
reaction (as in example 6 above), ring expansions with
diazo derivatives,2,13 the Beckmann and related rear-
rangements, etc. Further studies along these lines are in
progress.
8. Liard, A.; Quiclet-Sire, B.; Zard, S. Z. Tetrahedron Lett.
1996, 37, 5877–5880.
9. (a) Quiclet-Sire, B.; Quintero, L.; Sanchez-Jimenez, G.;
Zard, S. Z. Synlett 2003, 75–78; (b) Binot, G.; Quiclet-
Sire, B.; Saleh, T.; Zard, S. Z. Synlett 2003, 382–386.
10. Cholleton, N.; Gillaizeau-Gauthier, I.; Six, Y.; Zard, S.
Z. Chem. Commun. 2000, 535–536.
11. For another case where the O-neopentyl xanthate proved
superior, see: Quiclet-Sire, B.; Zard, S. Z. J. Am. Chem.
Soc. 1996, 118, 9190–9191.
Acknowledgements
One of us (G.B.) gratefully acknowledges generous
12. Broom, N.; O’Hanlon, P. J.; Simpson, T. J.; Stephen, R.;
Willis, C. L. J. Chem. Soc., Perkin Trans. 1 1995, 3067–
3072.
financial support from the DGA.
13. See for example: (a) Brocksom, T. J.; Coelho, F.; Depre´s,
J.-P.; Greene, A. E.; Freire de Lima, M. E.; Hamelin, O.;
Hartmann, B.; Kanazawa, A. M.; Wang, Y. J. Am.
Chem. Soc. 1996, 118, 15313–15325 and references there
cited; (b) Biswas, S.; Gosh, A.; Venkateswaran, R. V. J.
Org. Chem. 1990, 55, 3498–3502.
References
1. Namyslo, J. C.; Kaufmann, D. E. Chem. Rev. 2003, 103,
1485–1538 and references there cited therein.
2. (a) Lee-Ruff, E. In Advances in Strain in Organic Chem-
istry; Halton, B., Ed.; JAI Press: Greenwich, CT, 1991;