C O M M U N I C A T I O N S
Table 1. Polymerization of IB Initiated Using Diborane 1a
for the controlled polymerization of IB and other susceptible
monomers.
[CumCl]
(mM)
[DTBMP]
(mM)
[IB]
(M)
conv.
(%)
Mhw
(K)
f
entry
PDI
(%)b
Acknowledgment. We thank the Natural Sciences and Engi-
neering Research Council of Canada and the University of Akron
for financial support of this work. We also acknowledge the
assistance of Mr. J. Page in conducting GPC analyses of PIB
samples and Professor W. Clegg (U. Newcastle) for also solving
the X-ray structure of compound 4.
1c
2
3
-
0
0
2.76
2.76
2.76
2.76
2.76
2.76
2.76
2.35
2.76
2.35
2.76
100
100
5.8
1.4
0.47
0.10
172
285
302
552
753
98
361
255
146
779
-
2.60
2.40
2.48
3.60
4.60
1.80
1.72
1.92
1.75
2.11
-
-
-
-
2.0
5.0
15.0
0
20.0
20.0
20.0
2.0
20.0
-
4
-
-
5
-
-
6d
7
-
-
0.20
0.30
0.55
0.20
0.20
42
156
68
134
166
-
8
9
21
40
93
0
Supporting Information Available: Experimental procedures,
selected NMR spectra and tables of crystallographic and refinement
data, atomic coordinates and isotropic thermal parameters, bond lengths
and angles, anisotropic thermal parameters, H-atom coordinates, and
isotropic thermal parameters for compound 4 (PDF). This material is
10
11d
--
a
Diborane 1 dissolved in toluene (0.3 mL) was added to a solution of
IB in hexane (total volume 24.5 mL) at -78 °C containing DTBMP, and
then a solution of CumCl in CH2Cl2 (0.2 mL) was added. Final concentration
of [1] ) 2.0 mM. Initiator efficiency f ) 100(Xn /Xn) where Xno ) ([IB]o/
b
o
c
[CumCl]o)(conv./100). Diborane 1 in hexane solution added to monomer
References
d
in hexane at -78 °C. Final [1] ) 0.5 mM. B(C6F5)3 (4.0 mM) was
substituted for diborane 1.
(1) Chen, E. Y.-X.; Marks, T. J. Chem. ReV. 2000, 100, 1391-1434.
(2) (a) Kennedy, J. P. J. Polym. Sci., Part A: Polym. Chem. 1999, 37, 2285-
2293. (b) Kennedy, J. P.; Mare´chal, E. “Cationic Polymerization” John
Wiley & Sons: New York, 1982.
of angle strain as exemplified in the acute C(1)-B(1)-Cl(1) and
C(2)-B(2)-Cl(1) angles of 98.03(9) and 98.98(9)°, respectively.
Evidently, the “bite” angle of diborane 1 is not optimal for chloride
binding as judged by comparison to the structure of [PPN][1,8-
(Cl2B)2C10H6(µ-Cl)] in which both the B-Cl bond lengths are
shorter [av 1.92(1) Å] and the angles within the six-membered ring
less distorted from tetrahedral values.11
The triphenylmethyl cation has a propeller arrangement of the
phenyl rings about the central carbon which features sp2 hybridiza-
tion [Σ C(7) ) 359.99(13)°]. While this atom is oriented toward
the bridging Cl of the counteranion, this interaction may be
electrostatic in nature; the C(7)-Cl(1) distance of 3.899(15) Å is
significantly longer than the sum of the van der Waals radii of Cl
and sp2-hybridized C (3.65 Å).
Diborane 1 is an effective initiator for IB polymerization even
in apolar media such as hexane (Table 1, entries 1 and 2). Despite
the use of a vacuum line, silanized glassware, and final purification
of both monomer and solvent by vacuum transfer from tri-
noctylaluminum, it proved impossible to prevent protic initiation
by diborane 1 except through the addition of 2,6-di-tert-butyl-4-
methylpyridine (DTBMP). As shown in the Table 1, entries 3-5,
about a 5-10-fold excess of DTBMP with respect to 1 was required
to inhibit protic initiation. Evidently under these conditions (1.5-
2.0 ppm H2O!) protic initiation of IB polymerization is highly
effective. The MW in the absence of DTBMP appears limited by
these low levels of H2O as seen from the increase in MW with
[DTBMP] (Table 1, entries 3-5).12
Controlled polymerization of IB, initiated by CumCl and excess
diborane 1, was possible in the presence of a large excess of
DTBMP in hexane solution (Table 1, entries 7-9) where MW
correlates with CumCl concentration. Under more typical conditions
(entry 10 vs 7),13 polyIB of high-molecular weight is obtained at
high conversion. Calculated initiator efficiencies (f) routinely
approach or exceed 100%, consistent with effective initiation and
chain transfer. The initiator efficiency of diborane 1 in concert with
CumCl is superior compared to that in some other initiator systems
which feature WCA under similar conditions.4i-k
(3) Lupinetti, A. J.; Strauss, S. H. Chemtracts 1998, 11, 565-595.
(4) (a) Kumar, K. R.; Hall, C.; Penciu, A.: Drewitt, M. J.; McInenly, P. J.;
Baird, M. C. J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 3302-
3311. (b) Baird, M. C. Chem. ReV. 2000, 100, 1471-1478. (c) Carr, A.
G.; Dawson, D. M.; Thornton-Pett, M.; Bochmann, M. Organometallics
1999, 18, 2933-2935. (d) Kennedy, J. P.; Pi, Z.; Jacob, S. Polym. Mater.
Sci. Eng. 1999, 80, 495. (e) Jacob, S.; Kennedy, J. P. Ionic Polymerizations
and Related Processes. NATO Sci. Ser., Ser. E 1999, 359, 1-12. (f) Barsan,
F.; Karam, A. R.; Parent, M. A.; Baird, M. C. Macromolecules 1998, 31,
8439-8447. (g) Carr, A. G.; Dawson, D. M.; Bochmann, M. Macromol.
Rapid Commun. 1998, 19, 205-207. (h) Jacob, S.; Pi, Z. J.; Kennedy, J.
P. Polym. Bull. 1998, 41, 503-510. (i) Shaffer, T. D. ACS Symposium
Series 665; American Chemical Society: Washington, DC, 1997, 1. (j)
Shaffer, T. D. ACS Symposium Series 665; American Chemical Society:
Washington, DC, 1997; 96. (k) Shaffer, T. D.; Ashbaugh, J. R. J. Polym.
Sci., Part A: Polym. Chem. 1997, 35, 329. (l) Langstein, G.; Bochmann,
M.; Dawson, D. M. Eur. Pat. Appl. EP 787748, 1997. (m) Bochmann,
M.; Dawson, D. M. Angew. Chem., Int. Ed. Engl. 1996, 35, 2226-2228.
(n) Shaffer, T. D.; Dias, A. J.; Finkelstein, I. D.; Kurtzman, M. B. PCT
Int. Appl. WO 9529940, 1995. (o) Baird, M. C. U.S. Patent 5,448,001,
1995.
(5) Piers, W. E.; Irvine, G. J.; Williams, V. C. Eur. J. Inorg. Chem. 2000,
2131-2142.
(6) (a) Williams, V. C.; Irvine, G. J.; Piers, W. E.; Li, Z.; Collins, S.; Clegg,
W.; Elsegood, M. R. J.; Marder, T. B. Organometallics 2000, 19, 1619-
1621. (b) Williams, V. C.; Dai, C.; Li, Z.; Collins, S.; Piers, W. E.; Clegg,
W.; Elsegood, M. R. J.; Marder, T. B. Angew. Chem., Int. Ed. 1999, 38,
3695-3698. (c) Williams, V. C.; Piers, W. E.; Clegg, W.; Elsegood, M.
R. J.; Collins, S.; Marder, T. B. J. Am. Chem. Soc 1999, 121, 3244-
3245. (d) Koehler, K.; Piers, W. E.; Jarvis, A. P.; Xin, S.; Feng, Y.;
Bravakis, A. M.; Collins, S.; Clegg, W.; Yap, G. P. A.; Marder, T. B.
Organometallics 1998, 17, 3557-3566. (e) Jia, L.; Yang, X.; Stern, C.;
Marks, T. J. Organometallics 1994, 13, 3755-57.
(7) Matyjaszewski, K.; Sigwalt, P. Macromolecules 1987, 20, 2679-2689.
(8) Russell, R.; Moreau, M.; Charleux, B.; Vairon, J.-P.; Matyjaszewski, K.
Macromolecules 1998, 31, 3775-3782.
(9) Compound 4: 1H NMR (CDCl3, 300 MHz): δ 8.23 (tt, 3H, p-C6H5),
7.83 (m, 6 H, m-C6H5), 7.61 (dd, 6 H, o-C6H5). 19F NMR (CDCl3, 282
MHz) δ -132.0 (d, 8F, o-C6F5), -136.1 (d, 2F, o-C6F4), -158.6 (t, 4F,
p-C6F5), -162.1 (d, 2F, m-C6F4), -165.6 (m, 8F, m-C6F5). 13C{1H}(CDCl3,
1
75 MHz): δ 210.8 (s, CPh3), 147.9 (d, JC-F ) 245 Hz, o-C6F5), 146.9
(d, 1JC-F ) 242 Hz, o-C6F41), 143.7 (s, p-C6H5), 142.4 (s, o- C6H5), 139.8
1
(s, ipso- C6H5), 139.8 (d, JC-F ) 251 Hz, p-C6F5), 138.4 (d, JC-F
)
1
240 Hz, m-C6F4), 136.7 (d, JC-F ) 249 Hz, m-C6F5), 133.7 (br s, ipso-
C6F4), 130.6 (s, m-C6H5), 118.1 (br s, ipso-C6F5). Anal. Calcd for
C49H15B2F24Cl: C, 52.70; H, 1.35. Found C, 52.36, H, 1.40.
(10) Molecular structure of compound 4 with 30% thermal ellipsoids
depicted: Triclinic, P1h, a ) 11.2135(4) Å, b ) 11.7384(5) Å, c )
19.3086(8) Å, R ) 72.610(1)°, â ) 89.354(1)°, γ ) 62.433(1)°, V )
2125.66(15) Å3, Z ) 2, R ) 0.0468, wR ) 0.0744 based on 12, 469
independent reflections with I > 2σ(I).
(11) Katz, H. E. Organometallics 1987, 6, 1134-36.
That the chelated nature of the counteranion is important for
effective initiation was revealed by comparative experiments using
B(C6F5)3. As shown in Table 1, this borane was ineffective for IB
polymerization using either CumCl (entry 11) or protic initiation
(entry 6) even at equivalent concentrations with respect to boron.14
Future work will explore the utility of diborane 1 as co-initiator
(12) Garratt, S.; Carr, A. G.; Langstein, G.; Bochmann, M. Macromolecules
2003, 36, 4276-87 and references therein.
(13) Storey, R. F.; Curry, C. L.; Hendry, L. K. Macromolecules 2001, 34,
5416-32.
(14) For use of [(Cp′2Zr)2H3][(C6F5)3B-(µ-X)-B(C6F5)3] (X ) CN, NH2) in
IB polymerization see ref 12.
JA037725Y
9
J. AM. CHEM. SOC. VOL. 125, NO. 48, 2003 14687