SYNTHESIS, CHARACTERIZATION, AND CYTOTOXIC ACTIVITY
55
and spectral (UV-Vis, IR, 1H NMR, 13C NMR, mass) and mag-
netic moment measurements techniques. The ligands behaved
either as neutral tridentate or neutral bidentate ligands. Conduc-
tance measurements suggest the non-electrolytic nature for all
the metal complexes except complex 5, which behaves as a 1:1
electrolyte. Complexes 2, 8, and 9 showed a remarkable smaller
value of IC50 than that of Tamoxifen, which would provide a
new potential antitumor drug that deserves more attention.
REFERENCES
1. Tebbe, M.J.; Spitzer, W.A.; Victor, F.; Miller, S.C.; Lee, C.C.; Sattelberg,
T.R.; Mckinney, E.; Tang, C.J. J. Med. Chem. 1997, 40, 3937–3946.
2. Tamm, I. Science 1957, 126, 1235–1236.
3. Iyenger, S.; Nuhhauser, M.A.; Thor, K.B. U.S. Patent 1, 1996.
4. Bai, Y.; Lu, J.; Shi, Z.; Yang, B. Synth. Lett. 2001, 544.
5. El-Deeb, I. M.; Lee, S. H. Bioorgan. Med. Chem. 2010, 18, 3860–3874.
6. Lin, Y.-L.; Su, Y.-T.; Chen, B.-H. Eur. J. Pharmacol. 2010, 637, 1–10.
7. Desoize, B. Crit. Rev. Oncol. Hematol. 2002, 42, 213–215.
8. Huang, R.; Wallqvist, A.; Covell, D.G. Biochem. Pharmacol. 2005, 69,
1009–1039.
FIG. 4. Effect of different concentrations of ligand HL2 and its complexes on
the viability of human breast cancer cell line (MCF-7).
obtained with human breast cancer cell line (MCF-7) revealed
that the H3L1 ligand and HL2-silver complexes were between
2.53 and 2.8 and HL2-copper complexes were 3.35 times more
cytotoxic than Tamxifen, whereas the Ag(I) complexes induce
apoptosis (programmed cell death) in cancer cells which may be
a direct result of their action on the cell, while copper complexes
would cause intracellular generation of hydroxyl radicals from
H2O2 produced during normal cellular activities by the reduc-
tion of Cu(II) to Cu(I), leading to a growth inhibition in tumor
cells.[66] The ligand HL2 and its complexes, except complexes 8
and 9, showed a very low reactivity and we can regard the reac-
tivity in case of complexes 8 and 9 to the presence of copper and
silver ions. The very high reactivity in case of complex 9 com-
pared to the low reactivity of complex 3 is due to the presence
of sulfur in the ligand HL2. Since sulfur is a medium-soft base it
stabilizes copper in the low oxidation state and hence facilitates
the reduction of Cu(II) to Cu(I). This reduction will increase the
formation of hydroxyl radicals from H2O2. Oxygen is a hard
base and stabilizes the presences of copper in the high oxidation
state. The close cytotoxic value of H3L1-platinum complex 11
to Tamxifen value supports the use of cisplatin and related plat-
inum complexes as anti-cancer agents, which has stimulated a
search for other active transition metal complexes, which are as
or more effective but with fewer side effects.[63]
9. Karthikeyan, M.S.; Prasad, D.J. Bioorg. Med. Chem. 2006, 14, 7482–7489.
10. Singh, K.; Barwa, M.S.; Tyagi, P. Eur. J. Med. Chem. 2007, 42, 394–402.
11. Creaven, B.S.; Duff, B.; Egan, D.A.; Kavanagh, K.; Rosair, G.; Thangella,
V.R.; Walsh, M. Inorg. Chim. Acta 2010, 363, 4048–4058.
12. Kukalenko, S.S.; Udovenko, V.A.; Borysova, V.P.; Kulugina, N.L.; Bur-
makin, N.M.; Andreeva, E.L.; U.S.S.R. SU 1,636,414. Odkrytiya Izobret
1991, 11, 75–165.
13. Nikolova, D.; Ivanov, R.; Buyukliev, S.; Konstantinov, M.; Karaivanova,
M.; Arzneim-Forsch, A. Drug Res. 2001, 51, 758–762.
14. Mendelson, W.L.; Hayden, S. Synth. Commun. 1996, 26, 603–610.
15. Cescon, L.A.; Day, A.R. J. Org. Chem. 1962, 27, 581.
16. Welcher, F.J. The Analytical Uses of Ethylenediamine Tetraacetic Acid.
Van Nostrand: New York, 1958.
17. Vogel, A.I. Textbook of Practical Organic Chemistry, Including Qualitative
Organic Analysis. Longman: London, 1978.
18. Holzbecher, Z.; Divis, L.; Kral, M.; Sucha, L.; Vracil, F. Handbook of
Organic Reagents in Inorganic Analysis. Wiley: Chichester, England, 1976.
19. El-Sonbati, A.Z.; El-Bindary, A.A.; Al-Sarawy, A.A. Spectrochim. Acta,
Part A 2002, 58, 2771–2778.
20. Kovala-Demertzi, D.; Yadav, P.N.; Demertzis, M.A.; Coluccia, M. J. Inorg.
Biochem. 2000, 78, 347–354.
21. Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; Mahon, J.; Vistica, D.;
Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. J. Nat. Cancer Ins.
1990, 82, 1107–1112.
22. El-Bindary, A.A. Trans. Met. Chem. 1997, 22, 381–384.
23. Golcu, A.; Tumer, M.; Demirelli, H.; Wheatley, R.A. Inorg. Chim. Acta
2005, 358, 1785–1797.
24. Kannan, S.; Ramesh, R. Polyhedron 2006, 25, 3095.
25. Maurya, M.R.; Chandrakar, A.K.; Chand, S. J. Mol. Catal. A: Chem. 2007,
263, 227–237.
The IC50 values were summarized as shown in Figure 2 and
the effect of different concentrations of the ligands and their
complexes on the viability of human breast cancer cell line
(MCF-7) are shown in Figures 3 and 4.
26. Youssef, N. S.; El-Zahany, E.; El-Seidy, A.M.A.; Caselli, A.; Fantauzzi, S.;
Cenini, S. Inorg. Chim. Acta 2009, 362, 2006–2014.
27. Nakatamato, K. Infrared Spectra of Inorganic and Coordination Com-
pounds. Wiley Interscience: New York, 1970.
28. El-Wahab, Z.H.A.; Mashaly, M.M.; Salman, A.A.; El-Shetary, B.A.; Fa-
heim, A.A. Spectrochim. Acta Part A 2004, 60, 2861–2873.
29. Youssef, N. S.; El-Zahany, E. A.; El-Seidy, A. M. A.; Caselli, A.; Cenini,
S. J. Mol. Catal. A: Chem. 2009, 308, 159–168.
30. El-Tabl, A.S.; El-Saied, F.A.; Al-Hakimi, A.N. Transition Met. Chem. 2007,
32, 689–701.
CONCLUSION
In the present work, we synthesized two novel Schiff base lig-
ands H3L1 and HL2 and their AgI, CuII, FeIII, PtII, RuIII, NiII, and
ZnII. The ligands and their metal complexes have been synthe-
sized and identified by elemental analyses, molar conductivities,
31. Sarkar, S.; Dey, K. Spectrochim. Acta, Part A 2005, 62, 383–393.