294
E.M. Nour, M.S. Refat / Journal of Molecular Structure 994 (2011) 289–294
Table 4
References
Spectorophotometric results of the formed CT-complexes [(La(acac)3)2I]+ÁIÀ and
3
[La(acac)3(DDQ] in CH2Cl2.
[1] M. Mizuno, J. Tanaka, I. Harada, J. Phys. Chem. 85 (1981) 1789.
[2] E.M. Nour, S.Y. Alqaradawi, A. Mostafa, E. Shams, H.S. Bazzi, J. Mol. Struct. 980
(2010) 218.
[3] S.Y. AlQaradawi, H.S. Bazzi, A. Mostafa, E.M. Nour, Spectrochim. Acta 71A
(2008) 1594.
[4] S.Y. AlQaradawi, E.M. Nour, Spectrochim. Acta A 62 (2005) 578.
[5] S.Y. AlQaradawi, E.M. Nour, J. Mol. Struct. 794 (2006) 251.
[6] E.M. Nour, L.H. Chen, J. laane, J. Phys. Chem. 90 (1986) 2841.
[7] E.M. Nour, Spectrochim. Acta 56A (2000) 167.
[8] L.L. Rodina, V.A. Ryzhakov, Heterouycles 40 (1995) 1035.
[9] E.M. Nour, L.A. Shahada, L.A. Al-Kaabi, Bull. Soc. Chim. Fr. 6 (1989) 727.
[10] E.M. Nour, A.S. Barkat, A. Amer, A. Ebrahim, Spectrosc. Lett. 32 (1999) 155.
[11] E.M. Nour, L. Shahada, Spectrochim. Acta A 45 (1989) 1033;
E.M. Nour, L. Shahada, Spectrochim. Acta 44A (1988) 1277.
[12] E.M. Nour, L.H. Chen, J. Laane, J. Raman Spectrosc. 17 (1986) 467.
[13] E.M. Nour, S.M. Teleb, M.A.F. Elmosallamy, M.S. Refat, S. Afr. J. Chem. 56 (2003)
10.
[14] Kh.A. Hassan, Spectorchim. Acta 60A (2004) 3059.
[15] R. Foster, Organic Charge-Transfer Complexes, Academic Press Inc., New York,
1969.
[16] P.J. Trotter, P.A. White, Appl. Spectrosc. 32 (1978) 323.
[17] F. Gutmann, C. Johnson, H. Keyzer, J. Molnar, Charge-Transfer Complexes in
Biochemical Systems, Marcel Dekker Inc., 1997.
[18] M.C. Grossel, S.C. Weston, Chem. Mater. 8 (1996) 977.
[19] J.M. Masnovi, J.K. Kochi, E.F. Hilinski, P.M. Retzepis, J. Am. Chem. Soc. 108
(1986) 1126.
[20] K.Y. Rajpure, C.H. Bhosale, Chem. Mater. Chem. Phys. 64 (2000) 70.
[21] S. Licht, Solar Energy Mater. Solar Cells 38 (1995) 305.
[22] K. Ito, K. Saito, Heterocycles 38 (1994) 2691.
Complex
K (l molÀ1
)
k max (nm)
e
(l molÀ1 cmÀ1
)
[(La(acac)3)2I]+ÁI3À
7.32 Â 104
1.85 Â 104
362
290
407
0.62 Â 104
1.15 Â 104
0.341 Â 104
[La(acac)3(DDQ)]
donation from the [La(acac)3] while the high value of
well with the formation of CT-complexes which are known to have
high absorpativity values [11]. The values of K and for both com-
plexes show variation as the solvent is changed from CH2Cl2 to
CHCl3 or CCl4, but no clear relationship with solvent properties
can be obtained. The value of K for [(La(acac)3)2I]+ÁI3À is about four
times higher than that of [La(acac)3(DDQ)]. It might be difficult to
discuss such a variation in the light that the iodine is a
while DDQ is a -acceptor. The molecular sizes of both acceptors
e
agree quite
e
r-acceptor
p
are also different reflecting a higher steric hindrance in case of
DDQ and hence, an expected decrease in its formation constant va-
lue compared with that of iodine.
In conclusion, The formation of [(La(acac)3)2I]+ÁI3À is analogouÀs
to a number of other complexes [2,11] such as [(TACTD)] I+ÁI3
and [((TACTDD)]I+ÁI3À; (TACTD), 1,4,8,11-tetraazacyclotetradecane
and (TACTDD). 1,4,8,11-tetraazacyclotetradecane-5,7-dione. The
[La(acac)3]: I2 ratio is 1:1. Here, two donor molecules of [La
(acac)3] are required for the formation and stabilization of the
I+ÁI3 unit. This might indicate that [La(acac)3] acts as a relatively
weaker donar compared with other donors such as amines,
TACTD and TACTDD where one donor molecule is able to stabi-
lize the trioidide product. On the other hand, [La(acac)3] reacts
with the donor DDQ with the same stoichiometry of 1:1 forming
the CT-complex [La(acac)3(DDQ)]. Here, the steric hindrance
could play an important role in decreasing the complex stability
compared with that of iodine complex. This is evident from that
the formation constant of the iodine complex [(La(acac)3)2I]+ÁI3À is
almost four times higher than that of the corresponding complex
[La(acac)3(DDQ)].
[23] P.R. Singh, R. Sahai, Aust. J. Chem. 23 (1970) 269.
[24] N. Kulevsky, K.N. Butamina, Spectrochim. Acta A 46 (1990) 79.
[25] R. Sahai, V. Singh, R. Verma, J. Ind. Chem. Soc. 58 (1981) 670;
V. Singh, R. Sahai, J. Macromol. Sci. Chem. A22 (1985) 33.
[26] L. Andrews, E.S. Prochaska, A. Loewenschuss, Inorg. Chem. 19 (1980) 463.
[27] W. Kiefer, H.J. Brenstien, Chem. Phys. Lett. 16 (1972) 5.
[28] T. Moeller, W.F. Ulrich, J. Inorg. Nucl. Chem. 2 (1956) 164;
J.G. Stites, C.N. McCarty, L.L. Quill, J. Am. Chem. Soc. 70 (1948) 3142.
[29] L. Shahada, A. Mostafa, E.M. Nour, H.S. Bazzi, J. Mol. Struct. 933 (2009) 1.
[30] D.A. Skoog, F.J. Holler, T.A. Niemen, Principles of Instrumental Analysis, fifth
ed., Saunders College Publishing, New York, 1992 (Chapter 14).
[31] A. Anderson, T.S. Sun, Chem. Phys. Lett. 6 (1970) 11.
[32] W. Gabes, R. Elst, J. Mol. Struct. 21 (1974) 1.
[33] G.A. Bowmaker, R.J. Knappstein, J. Chem. Soc. Dalton Trans. (1977) 1928.
[34] R. Abu-Eittah, A. El-Kourashy, J. Phys. Chem. 76 (1972) 2405.
[35] A.G. Maki, R. Forneris, Spectrochim. Acta A 23 (1967) 867.