9284
F. Lassagne, F. Pochat / Tetrahedron Letters 44 (2003) 9283–9285
Table 1.
R1
R2
R3
R4
3 (Z/E mixture)
4
5
Yield (%)
mp (°C)
Yield (%)
mp (°C)
Yield (%)
mp (°C)
a
b
c
d
e
f
H
H
Me
tBu
Cl
OMe
OCH2O
OMe
H
H
H
H
H
H
H
H
H
H
H
H
H
H
OMe
85
86
75
70
70
81
85
90
58–68
64–70
76–80
128–132
80–94
90–100
100–110
98–104
54
64
61
60
65
63
50
35a
157–158b
209–210c
182–183
173–174
221–222
224–225
202–203
269–270
55
–
60
–
–
–
151–152d
–
158–159
–
–
–
–
–
OMe
OMe
OMe
OMe
OMe
OMe
OMe
g
h
–
–
H
a Cyclization occurred at 100°C and the lower yield of flavone 4h was explained by the concomitant formation of the phenolic compound 4%h
(R1=R3=OMe, R2=H, R4=OH) in 15% yield. Data for 4%h: mp=232–233°C. EIMS: m/z found 323.0799 (M+); calc. for C18H13NO5: m/z
1
323.0794 (M+). H NMR (500 MHz, DMSO) l 11.97 (1H, s, OH), 8.11 (2H, d, J=8.7 Hz, H-2%, 6%), 7.23 (2H, d, J=8.7 Hz, H-3%, 4%), 6.86 (1H,
d, J=1.75 Hz, H-6), 6.50 (1H, d, J=1.75 Hz, H-8), 3.91 (3H, s, MeO), 3.89 (3H, s, MeO). 13C NMR (125 MHz, DMSO) l 178.83 (CꢁO), 171.25
(C-2), 166.68 (C-7), 164.00 (C-4%), 161.09 (C-5), 156.93 (C-8a), 131.50 (C-2%, 6%), 121.94 (C-1%), 115.08 (C-3%, 5%), 114.67 (CꢀN), 103.44 (C-4a),
99.71 (C-6), 94.57 (C-3), 94.34 (C-8), 56.89 (MeO), 56.31 (MeO).
b mp (lit.2)=151–152°C.
c mp (lit.2)=202–203°C.
d mp (lit.6)=152°C.
(1H, d, J=8.8 Hz, H-5), 8.07 (2H, J=8.6 Hz, H-2%, 6%),
7.62 (2H, d, J=8.6 Hz, H-3%, 5%), 7.05 (1H, dd, J=8.8
and 2.2 Hz, H-6), 6.97 (1H, d, J=2.2 Hz, H-8), 3.97
(3H, s, OMe), 1.4 (9H, s, tBu). 13C NMR (75 MHz,
CDCl3) l 173.43 (CꢁO), 170.46 (C-2), 165.18 (C-7),
157.30 (C-4%), 157.13 (C-8a), 128.51 (C-2%,6%),127.41 (C-
5), 127.18 (C-1%), 126.12 (C-3%,5%), 115.68 (C-6), 115.53
(C-4a), 114.45 (CꢀN), 100.76 (C-8), 97.46 (C-3), 56.15
(MeO), 35.29 (Cqu tBu), 31.03 (CH3). EIMS: m/z
333.1363 (M+).
(C-2), 164.75 (C-7), 157.4 (C-8a), 143.07 (C-4%), 129.94
(C-2%, 6%), 129.27 (C-3%, 5%), 127.92 (C-1%), 127.70 (C-5),
117.96 (C-4a), 117.30 (C-3), 115.17 (C-6), 100.69 (C-8),
55.98 (MeO), 21.70 (CH3).
In summary, this paper describes the first simple and
efficient method for the synthesis of substituted 3-
cyanoflavones and
a corresponding access to 3-
formylflavones, which could be of interest as starting
materials for preparation of novel heterocyclic systems.
We observed that no reaction occurs without the pres-
ence of AlCl3, the cyclisation is easier when electron-
donating groups are in either the ortho or para position
relative to the ester moiety. We suppose that the first
step involves complexation of the carbonyl by AlCl3
which increases the electropositivity of the carbon
atom. A Mannich-type reaction of the enol ether moi-
ety should then close the six-membered ring, releasing
methoxide which could in turn assist the elimination of
the ethylthio group, thereby restoring aromaticity.
Acknowledgements
Thanks to M. Utjes for her support, and S. Sinbandhit
and P. Guenot for recording NMR and mass spectra.
References
1. Patonay, T.; Levai, A. Arch. Pharm. 1994, 327, 181–186.
2. Mallik, A. K.; Chattopadhyay, F.; Dey, S. P. Tetrahedron
Lett. 2000, 41, 4929–4931.
Furthermore, these 3-cyanoflavones can be converted
to 3-formylflavones 5, by the reduction of the nitrile
group with Raney nickel/formic acid5 as shown for
compounds 5a and 5c (Table 1). Selected data for 5c:
1H NMR (300 MHz, CDCl3) l 10.15 (1H, s, CHO),
8.20 (1H, d, J=8.9 Hz, H-5), 7.56 (2H, d, J=8.1 Hz,
H-2%, 6%), 7.34 (2H, d, J=8.1 Hz, H-3%, 5%), 7.04 (1H, dd,
J=8.9 and 2.3 Hz, H-6), 6.9 (1H, d, J=2.3 Hz, H-8),
3.92 (3H, s, MeO), 2.47 (3H, s, Me). 13C NMR (75
MHz, CDCl3) l 189.02 (CHO), 175.61 (CꢁO), 171.86
3. The bromo compounds 1 were prepared as follows:
Pochat, F. Tetrahedron Lett. 1979, 20, 19–22.