Communication
ChemComm
2 (a) J. Xu and C. Boyer, Macromolecules, 2015, 48, 520; (b) A. B. Lowe,
Polym. Chem., 2014, 5, 4820; (c) A. B. Lowe, Polymer, 2014, 55, 5517.
3 M. Feng, B. Tang, S. H. Liang and X. Jiang, Curr. Top. Med. Chem.,
2016, 16, 1200.
4 H. Pellissier, Chiral Sulfur Ligands, The Royal Society of Chemistry,
2009.
5 H. C. Kolb, M. G. Finn and K. B. Sharpless, Angew. Chem., Int. Ed.,
2001, 40, 2004.
6 For some selected reviews in photocatalysis, see: (a) C. Prier,
D. Rankic and D. W. C. MacMillan, Chem. Rev., 2013, 113, 5322;
(b) J. M. R. Narayanam and C. R. J. Stephenson, Chem. Soc. Rev.,
2011, 40, 102; (c) N. A. Romero and D. A. Nicewicz, Chem. Rev., 2016,
116, 10075.
7 E. L. Tyson, M. S. Ament and T. P. Yoon, J. Org. Chem., 2013, 78, 2046.
8 M. H. Keylor, J. E. Park, C.-J. Wallentin and C. R. J. Stephenson,
Tetrahedron, 2014, 70, 4264.
Fig. 1 Plausible mechanism based on different mechanism observations.
9 V. T. Bhat, P. A. Duspara, S. Seo, N. S. B. Abu Bakar and
M. F. Greaney, Chem. Commun., 2015, 51, 4383.
10 D. Limnios and C. G. Kokotos, Adv. Synth. Catal., 2017, 359, 323.
11 B. M. Trost and M. Rao, Angew. Chem., Int. Ed., 2015, 54, 5026.
12 For Pummerer reaction, see: S. K. Bur and A. Padwa, Chem. Rev.,
2004, 104, 2401.
13 (a) C. M. Rayner, Contemp. Org. Synth., 1995, 2, 409; (b) M. Madesclaire,
Tetrahedron, 1986, 42, 5459.
carried out both in the presence, and the absence of light (see
ESI†). The results indicated that the product formation only
occurred during the periods of visible light irradiation, therefore
the process is light dependent. These mechanistic proofs point
to the following proposal (Fig. 1). Firstly, the EY is excited when
irradiated with green light from the ground state to the triplet
excited state (E = 1.91 eV).6c,28 The photoexcited catalyst (EY*,
E1/2 = +0.83 V vs. SCE (saturated calomel electrode)6c,28) oxidises
the thiol I, which acts as a donor via a hydrogen atom transfer
process (HAT)29 (E1/2 = +0.45 V vs. SCE),30 generating a thiyl
radical II. Then, alkene III reacts with the thiyl radical to form IV.
This latter radical (IV) can be reduced by the oxidized EY to
yield the final thioether V, recovering the initial photocatalyst
(EY). A mechanism of chain propagation is also possible according
to the quantum yield (F = 5.8) which was measured for this
reaction (eqn (a), Scheme 6). Therefore, in this propagation
mechanism, the radical IV can be reduced via a HAT process29
by an electron and a proton from the thiol I to form V (right,
Fig. 1). In fact, we have used a deuterated thiol (TolSD) which has
been incorporated to the final product D-V (R = o-Br–C6H4) in an
anti-Markovnikov manner (Fig. 1 and ESI†). In the second
oxidation cycle the Eosin Y is excited to the triplet state, and
by means of an energy transfer mechanism, results in the
formation of singlet oxygen31 which can react with the thioether
V to give the final sulfoxide 4. This mechanism is possible
because the activation energy of singlet oxygen is 0.95 eV,31a,32
which indicates that the energy transfer of the excited EY
(1.91 eV6c,28) is thermodynamically flexible.
14 (a) X. Gu, X. Li, Y. Chai, Q. Yang, P. Li and Y. Yao, Green Chem., 2013,
´
´
¨
15, 357; (b) J. Dadova, E. Svobodova, M. Sikorski, B. Konig and
R. Cibulka, ChemCatChem, 2012, 4, 620; (c) A. Casado-Sanchez,
R. Gomez-Ballesteros, F. Tato, F. J. Soriano, G. Pascual-Coca,
S. Cabrera and J. Aleman, Chem. Commun., 2016, 52, 9137.
15 The synthesis of b-ketosulfoxides, starting from double bond and thiols,
was recently reported. However, our and other external group, were not
able to replicate these results, obtaining always starting material and
small amount of sulfoxides 4. (a) See: T. Keshari, V. K. Yadav,
V. Srivastava and L. D. S. Yadav, Green Chem., 2014, 16, 3986. For a
recent related work, see: (b) H. Cui, W. Wei, D. Yang, Y. Zhang, H. Zhao,
L. Wang and H. Wang, Green Chem., 2017, 19, 3520.
16 (a) W. Zhao and F.-E. Chen, Curr. Org. Synth., 2012, 9, 873;
(b) B. Ganem, Acc. Chem. Res., 2009, 42, 463; (c) D. J. Ramon and
M. Yus, Angew. Chem., Int. Ed., 2005, 44, 1602.
17 See e.g. (a) J.-R. Chen, D.-M. Yan, Q. Wei and W.-J. Xiao, ChemPho-
toChem, 2017, 1, 148; (b) B. Hu, W. Dong, Z. Feng, X. Gao, H. Gao,
X. Xie and Z. Zhang, Asian J. Org. Chem., 2016, 5, 1467; (c) S. Bloom,
D. D. Bume, C. R. Pitts and T. Lectka, Chem. – Eur. J., 2015, 21, 8060;
(d) S. Jana, A. Verma, R. Kadu and S. Kumar, Chem. Sci., 2017,
8, 6633; (e) S. K. Pagire and O. Reiser, Green Chem., 2017, 19, 1721;
( f ) D. Alpers, M. Gallhof, C. B. W. Starka and M. Brasholz, Chem.
Commun., 2016, 52, 1025.
18 A. Talla, B. Driessen, N. J. W. Straathof, L.-G. Milroy, L. Brunsveld,
¨
V. Hessel and T. Noel, Adv. Synth. Catal., 2015, 357, 2180.
¨
19 Y. Deng, X.-J. Wei, H. Wang, Y. Sun, T. Noel and X. Wang, Angew.
Chem., Int. Ed., 2017, 56, 832.
20 A. S. Franklin and L. E. Overman, Chem. Rev., 1996, 96, 505.
21 D. M. Arias-Rotondo and J. K. McCusker, Chem. Soc. Rev., 2016,
45, 5803.
22 M. A. Cismesia and T. P. Yoon, Chem. Sci., 2015, 6, 5426.
23 S. M. Bonesi, I. Manet, M. Freccero, M. Fagnoni and A. Albini, Chem.
– Eur. J., 2006, 12, 4844.
24 C. Ouannes and T. Wilson, J. Am. Chem. Soc., 1968, 90, 6527.
25 G. K. Fekarurhobo, S. S. Angaye and F. G. Obomanu, J. Emerging
Trends Eng. Appl. Sci., 2013, 4, 394.
In conclusion, the first photo-catalyzed synthesis of sulfoxides
from alkenes and thiols was carried out using Eosin Y, which has
been shown to be the best catalyst.
Spanish Government (CTQ2015-64561-R) and the ERC Council
(ERC-CG, contract number: 647550) are acknowledged.
¨
26 R. Lechner, S. Kummel and B. Konig, Photochem. Photobiol. Sci.,
2010, 9, 1367.
27 The overall quantum yield was 0.006 (see ESI,†).
¨
28 D. P. Hari and B. Konig, Chem. Commun., 2014, 50, 6688.
29 L. Capaldo and D. Ravelli, Eur. J. Org. Chem., 2017, 2056.
30 F. G. Bordwell, X.-M. Zhang, A. V. Satish and J.-P. Cheng, J. Am.
Chem. Soc., 1994, 116, 6605.
31 (a) M. C. DeRosa and R. J. Crutchley, Coord. Chem. Rev., 2002, 233–234,
351; (b) J. Zhang, L. Wang, Q. Liu, Z. Yang and Y. Huang, Chem.
Commun., 2013, 49, 11662.
Conflicts of interest
There are no conflicts to declare.
Notes and references
1 T. Posner, Ber. Dtsch. Chem. Ges., 1905, 38, 646.
32 E. Baciocchi, T. Del Giacco, F. Elisei, M. F. Gerini, M. Guerra, A. Lapi
and P. Liberali, J. Am. Chem. Soc., 2003, 125, 16444.
10466 | Chem. Commun., 2017, 53, 10463--10466
This journal is ©The Royal Society of Chemistry 2017