Please do not adjust margins
New Journal of Chemistry
Page 4 of 6
ARTICLE
Journal Name
1
2
3
4
5
6
7
8
9
excited state of chlorophyll to aryl diazonium salt 2a. Aryl radical
(Ι) can be introduced on two C-3 as well as C-4 positions of
coumarin where, the attachment of aryl radical to C-3 may
result in a more stable benzyl radical intermediate (II). Next the
DOI: 10.1039/D0NJ02012E
Feliciano, Molecules, 2012, 17, 9245. (e) L. S. You, R. An,
X. H. Wang and Y. M. Li, Bioorg. Med. Chem. Lett., 2010,
20, 7426.
F. Jafarpour and M. Abbasnia, J. Org. Chem., 2016, 81,
11982.
(a) C. Wang, X. Mi, Q. Li, Y. Li, M. Huang, J. Zhang and
Y. Wu, Tetrahedron, 2015, 71, 6689. (b) A. Banerjee,
S. K. Santra, N. Khatun, W. Ali and B. K. Patel, Chem.
Commun., 2015, 51, 15422. (c) B. Niu, W. Zhao, Y. Ding,
Z. Bian, C. U. Pittman Jr, A. Zhou and H. Ge, J. Org. Chem.,
2015, 80, 7251.
H. A. Stefani, K. Gueogjan, F. Manarin, S. H. P. Farsky, J.
Zukerman-Schpector, I. Caracelli, S. R. Pizano Rodrigues,
M. N. Muscará, S. A. Teixeira, J. R. Santin, I. D. Machado,
S. M. Bolonheis, R. Curi and M. A. Vinolo, Eur. J. Med.
Chem., 2012, 58, 117.
radical intermediate
(ΙΙ) is further transformed to the
7
8
carbocation intermediate (IV) by two possible pathways: (a)
oxidation of the radical intermediate by the chlorophyll radical
cation; (b) the oxidation of (ΙΙ) by aryl diazonium salt 2a in a
radical chain transfer mechanism. Finally, intermediate (IV) is
deprotonated, regenerating the aromatic system and leading to
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
the desired 3-arylated product 3a
.
9
Conclusions
In summary, we have reported
a metal-free, direct
10 M. Gupta, P. Kumar, V. Bahadur, K. Kumar, V. S. Parmar
and B. K. Singh, Eur. J. Org. Chem., 2018, 896.
intermolecular C−H arylation of coumarin by chlorophyll as a
photoredox biocatalyst with white LED light. The reaction
proceeds fluently at room temperature, which does not require
transition-metal catalysts or bases. The reaction involves the
generation of a phenyl radical via photoinduced electron
11 D. Kang, K. Ahn and S. Hong, Asian J. Org. Chem., 2018,
7, 1136.
12 J. W. Yuan, W. J. Li, L. R. Yang, P. M and Y. M. Xiao, Chem.
Sci., 2016, 71, 1115.
13 (a) H. R. El‐Seedi, J. Nat. Prod., 2007, 17, 118. (b) J. M.
Narvaez‐Mastache, F. Novillo and G. Delgado,
Phytochemistry., 2008, 69, 451. (c) L. You, R. An, X. Wang
and Y. Li, Bioorg. Med. Chem. Lett., 2010, 20, 7426. (d)
M. J. Matos, D. Vina, E. Quezada, C. Picciau, G. Delogu,
F. Orallo, L. Santana and E. Uriarte, Bioorg. Med. Chem.
Lett., 2009, 19, 3268.
transfer
from
a
chlorophyll
in
its
excited
state to a diazonium salt followed by addition to coumarin. The
formed radical is oxidized by the chlorophyll cation radical thus
closes the catalytic cycle. The protocol is green because it
utilizes visible light and natural pigment chlorophyll as the
photosensitizer to deliver the product at room temperature in
a simple procedure. This novel process provides an example for
exploring an environmentally friendly, simple, and convenient
synthetic route utilizing chlorophyll and light energy in organic
chemistry.
14 (a) M. Catto, O. Nicolotti, F. Leonetti, A. Carotti, A. D.
Favia, R. Soto‐Otero, E. Mendez‐Alvarez and A. Carotti,
J. Med. Chem., 2006, 49, 4912. (b) M. J. Matos, C. Teran,
Y. Perez.‐Castillo, E. Uriarte, L. Santana and D. Vina, J.
Med. Chem., 2011, 54, 7127. (c) L. Y. Kong, X. B. Wang
and S. S. Xie, Med. Chem. Commun., 2015, 6, 592. (d) P.
15 (a) L. Piazzi, A. Rampa, A. Bisi, S. Gobbi, F. Belluti, A.
Cavalli, M. Bartolini, V. Andrisano, P. Valenti and M.
Recanatini, J. Med. Com., 2003, 46, 2279. (b) K. V.
Sashidhara, R. K. Modukuri, P. Jadiya, K. B. Rao, T.
Sharma, R. Haque, D. K. Singh, D. Banerjee, M. I. Siddiqi
Conflicts of interest
There are no conflicts to declare.
and A. Nazir, ACS Med. Chem. Lett., 2014, 5, 1099.
Acknowledgements
We acknowledge the financial support from University of
Tehran.
16 (a) E. B. B. Ong, N. Watanabe, A. Saito, Y. Futamura, K.
H. A. E. Galil, A. Koito, N. Najimudin and H. Osada, J. Bio.
Chem., 2011, 286, 14049. (b) D. Olmedo, R. Sancho, L.
M. Bedoya, J. L. Lopez-Perez, E. D. Olmo, E. Munoz, J.
Alcami, M. P. Gupta and A. S. Feliciano, Molecules.,
2012, 17, 9245.
Notes and references
17 (a) Y. Li, Z. Qi, H. Wang, X. Fu and C. Duan, J. Org. Chem.,
2012, 77, 2053. (b) T. Ithara and F. Ouseto, Synthesis,
1984, 488.
18 J. M. Liu, X. Zhang, L. J. Shi, M. W. Liu, Y. Y. Yue, F. W. Li
and K. L. Zhao, Chem. Commun., 2014, 50, 9887.
19 K. V. Sashidhara, G. R. Palnati, S. R. Avula and A. Kumar,
1
(a) J. H. Clark and D. J. Macquarrie, Handbook of Green
Chemistry & Technology, Blackwell, Oxford, 2002. (b) S.
J. Haswell and P. Watts, Green Chem., 2003,
M. Nüchter, B. Ondruschka, W. Bonrathard and A. Gurn,
Green Chem., 2004, , 128.
5, 240.
2
6
Synlett, 2012, 4, 611.
3
4
G. Ciamician, Science, 1912, 36, 385.
S. Shanmugam, J. Xu and C. Boyer, Chem. Sci., 2015,
1341.
20 H. Y. Zeng and C. J. Li, Angew. Chem. Int. Ed., 2014, 53
,
6
,
13862.
21 M. J. Matos, S. Vazquez-Rodriguez, F. Borges, L. Santana
and E. Uriarte, Tetrahedron Lett., 2011, 52, 1225.
22 L. Zhang, T. H. Meng, R. H. Fan and J. Wu, J. Org. Chem.,
2007, 72, 7279.
5
6
J. T. Guo, D. C. Yang, Z. Guan and Y. H. He, J. Org. Chem.,
2017, 82, 1888.
(a) I. Ahmad, J. P. Thakur, D. Chanda, D. Saikia, F. Khan,
S. Dixit, A. Kumar, R. Konwar, A. S. Negi and A. Gupta,
Bioorg. Med. Chem. Lett., 2013, 23, 1322. (b) M. J.
Matos, , S. Vazquez-Rodriguez, L. Santana, E. Uriarte, C.
Fuentes-Edfuf, Y. Santos and A. Muñoz-Crego,
Molecules, 2013, 18, 1394. (c) P. Anand, B. Singh and N.
Singh, Bioorg. Med. Chem., 2012, 20, 1175. (d) D.
23 A. Unsinn, S. H. Wunderlich and P. Knochel, Adv. Synth.
Catal., 2013, 355, 989.
24 P. Chauhan, M. Ravi, S. Singh, P. Prajapati and P. P.
Yadav, RSC Adv., 2016, 6, 109.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins