The synthesis of 2 involves 3-(1H-pyrazol-3-yl)benzene-
methanol 4, a known compound15 prepared in this study by
NaBH4 reduction (MeOH, 0 °C) of the corresponding
aldehyde 3,16 in 82% yield (Scheme 1). Subsequent reaction
Scheme 1
Figure 1. TpCum,MeZn-OH (1)8 and macrobicycle 2 incorporating
the tris(pyrazolyl)methane chelate system.
active site of CA,5 and TpCum,MeZn-OH (1 of Figure 1)
performs the hydrolysis of a range of small molecule
substrates.8 The combination of TpiPr2 and bulky thiols has
produced rare tetrahedral copper(II) complexes that closely
mimic the spectroscopic characteristics of the blue copper
proteins.4b,c As a further example of the use of hindered
homoscorpionates to control reactivity, copper(I) complexes
of TpMs (Ms is mesityl) have been shown to catalyze the
cyclopropanation of olefins by ethyldiazoacetate with re-
markable cis diastereoselectivity.9 Good enantiocontrol (85%
ee) of the same reaction has been achieved with optically
active C3-symmetric Tps that have been tailored from
asymmetric pyrazoles.10
By contrast, tris(pyrazolyl)methane (Tpm) ligands,1,11 the
neutral analogues of scorpionates, have received less atten-
tion. In a few instances, they have led to metal complexes
with decreased stability,12 as clearly demonstrated for Zn2+,
in particular.13
In this letter, we present the synthesis of a macrobicycle
incorporating the tris(pyrazolyl)methane ligand system (2 of
Figure 1) by closing a functionalized tris(pyrazolyl)methane
derivative with a mesitylene cap. This approach is reminis-
cent of cyclophane chemistry.14 Macrobicycle 2 is the first
example of a new, general strategy for the control of the
metal environment in complexes of Tpm ligands, and
hopefully for improving their robustness.
with thiolacetic acid in Mitsunobu reaction conditions (PPh3,
DIAD, THF, 0 °C)17 afforded the benzenemethanethiol
acetate derivative 5 in 83% yield after chromatography (25%
EtOAc in heptane). The acetyl protecting group was removed
by reaction of 5 with potassium carbonate in methanol at
room temperature, followed by acidic workup, affording
3-(1H-pyrazol-3-yl)benzenemethanethiol 6 quantitatively.
Tris(pyrazolyl)methanes are classically prepared from
chloroform by reaction with the appropriate pyrazolate that
is either preformed11,18 or generated in situ (phase-transfer
catalysis),19 i.e., basic reaction conditions that are not adapted
to the use of either 5 or 6 as substrates. However, it was
shown recently that acid-catalyzed equilibration of tris-
(pyrazolyl)methane itself or TpmMe2 with pyrazoles allowed
the preparation of various Tpm ligands.20 Of particular
interest for our study was the preparation of TpmPh (10) in
67% yield by reaction of TpmMe2 (7) with 10 equiv of
3-phenyl-1H-pyrazole (8) in the presence of 1 equiv of TsOH
in refluxing toluene (Scheme 2). The disubstituted product
(9) was obtained in 33% yield.
(8) Ruf, M.; Vahrenkamp, H. Chem. Ber. 1996, 129, 1025-1028.
(9) D´ıaz-Requejo, M. M.; Belderra´ın, T. R.; Trofimenko, S.; Pe´rez, P.
J. J. Am. Chem. Soc. 2001, 123, 3167-3168.
(10) (a) Tokar, C. J.; Kettler, P. B.; Tolman, W. B. Organometallics
1992, 11, 2737-2739. (b) Keyes, M. C.; Chamberlain, B. M.; Caltagirone,
S. A.; Halfen, J. A.; Tolman, W. B. Organometallics 1998, 17, 1984-
1992.
(11) (a) Hu¨ckel, W.; Bretschneider, H. Ber. Dtsch. Chem. Ges. 1937,
70, 2024-2026. (b) Trofimenko, S. J. Am. Chem. Soc. 1970, 92, 5118-
5126.
Benzylthiol-substituted pyrazole 6 did not appreciably react
under these conditions. By contrast the acetyl-protected deriv-
ative 5 afforded a complex mixture of hetero-tris(pyrazolyl)-
methanes, due to the fact that the acetyl group had been
cleaved in part. Column chromatography (silicagel, dichloro-
methane/heptane) allowed separation of the simple pyrazoles,
(12) (a) Dhawan, I. K.; Bruck, M. A.; Schilling, B.; Grittini, C.; Enemark,
J. H. Inorg. Chem. 1995, 34, 3801-3808. (b) Reger, D. L.; Collins, J. E.;
Rheingold, A. L.; Liable-Sands, L. M.; Yap, G. P. A. Inorg. Chem. 1997,
36, 345-351.
(15) Cacchi, S.; Fabrizi, G.; Carangio, A. Synlett 1997, 959-961.
(16) Tanaka, A.; Terasawa, T.; Hagihara, H.; Sakuma, Y.; Ishibe, N.;
Sawada, M.; Takasugi, H.; Tanaka, H. J. Med. Chem. 1998, 41, 2390-
2410.
(17) (a) Mitsunobu, O. Synthesis 1981, 1-28. (b) Stratmann, O.; Kaiser,
B.; Fro¨hlich, R.; Meyer, O.; Hoppe, D. Chem.sEur. J. 2001, 7, 423-435.
(18) Byers, P. K.; Canty, A. J.; Honeyman, R. T. J. Organomet. Chem.
1990, 385, 417-427.
(13) Titze, C.; Hermann, J.; Vahrenkamp, H. Chem. Ber. 1995, 128,
1095-1103.
(14) (a) Boekelheide, V.; Hollins, R. A. J. Am. Chem. Soc. 1970, 92,
3512-3513. (b) Hohner, G.; Vo¨gtle, F. Chem. Ber. 1977, 110, 3052-3077.
(c) Ricci, A.; Danieli, R.; Rossini, S. J. Chem. Soc., Perkin Trans. 1 1980,
1691-1693. (d) Nakazaki, M.; Yamamoto, K.; Toya, T. J. Org. Chem.
1980, 45, 2553-2554. (e) Pascal, R. A., Jr.; Grossman, R. B.; Van Engen,
D. J. Am. Chem. Soc. 1987, 109, 6878-6880. (f) Chiu, J.-J.; Hart, H.; Ward,
D. L. J. Org. Chem. 1993, 58, 964-966. (g) Dell, S.; Ho, D. M.; Pascal,
R. A., Jr. J. Org. Chem. 1999, 64, 5626-5633.
(19) (a) De Angelis, F.; Gambacorta, A.; Nicoletti, R. Synthesis 1976,
798-800. (b) Julia´, S.; del Mazo, J. M.; Avila, L.; Elguero, J. Org. Prep.
Proced. Int. 1984, 16, 299-307. (c) Reger, D. L.; Grattan, T. C.; Brown,
K. J.; Little, C. A.; Lamba, J. J. S.; Rheingold, A. L.; Sommer, R. D. J.
Organomet. Chem. 2000, 607, 120-128.
(20) Goodman, M. S.; Bateman, M. A. Tetrahedron Lett. 2001, 42, 5-7.
748
Org. Lett., Vol. 6, No. 5, 2004