I. Sꢀanchez et al. / Tetrahedron Letters 45 (2004) 1737–1740
1739
Application: WO 0027845 A1 20000518; Chem. Abstr.
2000, 132, 334474.
(20 mL) was added and the residue was extracted with
dichloromethane (3 · 30 mL). The organic layer was
washed with 2 M NaOH solution, dried over Na2SO4,
filtered, and the solvent removed under vacuum. Purifica-
tion of the residue by column chromatography (silica gel,
hexane/ethyl acetate) gave the indoline 16 in 65% yield. (b)
To a stirred solution of 15 (0.3 mmol) in freshly distilled
DMF (2 mL), K2CO3 (0.6 mmol) was added at rt under
argon. The mixture was stirred for 12 h at 130 ꢁC. Then,
water (10 mL) and ether (10 mL) were added, and the
organic extracts were washed with water (3 · 20 mL), dried
(Na2SO4), and concentrated under reduced pressure to
give a residue which was purified by silica gel chromato-
graphy (hexane/ethyl acetate as eluent). The indoline 16
was obtained in 62% yield as a yellow oil.14
2. (a) Woodward, R. B.; Cava, M. P.; Ollis, W. D.; Hunger,
A.; Daeniker, H. V.; Schelenker, K. J. Am. Chem. Soc.
1954, 76, 4749–4751; (b) Woodward, R. B.; Cava, M. P.;
Ollis, W. D.; Hunger, A.; Daeniker, H. V.; Schelenker, K.
Tetrahedron 1963, 19, 247–288.
3. (a) Aramaki, S.; Atkinson, G. H. J. Am. Chem. Soc. 1992,
114, 438–444; (b) Meyers, C.; Carreira, E. M. Angew.
Chem., Int. Ed. 2003, 42, 694–696.
4. (a) Kinden, G. B.; Gold, M. H. J. Org. Chem. 1956, 21,
1175–1176; (b) Piotrowska, H.; Urbanski, T.; Kmiotek, I.
Roczmiki Chemii, Ann. Soc. Chim. Polonorum 1973, 47,
409–413; Chem. Abstr. 1973, 79, 66264.
5. (a) Crozet, M. P.; Surzur, J. M.; Vanelle, P.; Ghiglione, C.;
Maldonado, J. Tetrahedron Lett. 1985, 26, 1023–1026; (b)
Vanelle, P.; Crozet, M. P.; Maldonado, J.; Barreau, M.
Eur. J. Med. Chem. 1991, 26, 167–178; (c) Jentzer, O.;
Vanelle, P.; Crozet, M. P.; Maldonado, J.; Barreau, M.
Eur. J. Med. Chem. 1991, 26, 687–697.
6. Vanelle, P.; Madadi, N.; Roubaud, C.; Maldonado, J.;
Crozet, M. P. Tetrahedron 1991, 47, 5173–5184.
7. Vanelle, P.; Ghezali, S.; Maldonado, J.; Crozet, M. P.;
Delmas, F.; Gasquet, M.; Timon-David, P. Eur. J. Med.
Chem. 1994, 29, 41–44.
8. Benakli, K.; Terme, T.; Vanelle, P. Synth. Commun. 2002,
32, 1859–1865.
9. Burt, B. L.; Freemen, D. J.; Gray, P. G.; Norris, R. K.;
Randles, D. Tetrahedron Lett. 1977, 3063–3066.
16. Analytical data of some representative compounds synthe-
sized: 2,2-Dimethyl-5-nitro-5-(nitrobenzyl)-[1,3]-dioxane
(6). Mp 122–124 ꢁC (hexane/ethyl acetate). IR (KBr): m
(cmꢀ1) 1607 (N@O); 1544 (C@C); 1360 (N–O); 1199 (C–
O). 1H NMR (CDCl3, 200 MHz): d (ppm) 1.37 (s, 3H,
CH3); 1.48 (s, 3H, CH3); 3.63 (s, 2H, CH2); 4.05 (d,
J ¼ 13 Hz, 2H, CH2–O); 4.34 (d, J ¼ 13 Hz, 2H, CH2–O);
7.18 (dd, J1 ¼ 8 Hz, J2 ¼ 2 Hz, 1H, H-6); 7.53 (m, 2H, H-4,
H-5); 7.98 (dd, J1 ¼ 8 Hz, J2 ¼ 2 Hz, 1H, H-3). 13C NMR
(CDCl3, 50.3 MHz): d (ppm) 21.2 (CH3, A); 23.8 (CH3, B);
25.3 (CH3, C); 34.9 (CH2); 60.0 (CH2–O, A); 63.4 (CH2–
O, B); 64.1 (CH2–O, C); 88.8 (C, C-2); 99.0 (C, C-5, A);
99.3 (C, C-5, B); 118.8 (CH, C-50); 124.7 (CH, C-30); 127.5
(C, C-10); 128.1 (CH, C-60); 132.5 (CH, C-40); 137.8 (C, C-
20). Anal. Calcd for C13H16N2O6: C, 52.70; H, 5.44; N,
9.46. Found: C, 52.93; H, 5.69; N, 9.17.
10. (a) Kerber, R. C.; Urry, G. W.; Kornblum, N. J. Am.
Chem. Soc. 1965, 87, 4520; (b) Kornblum, N. Angew.
Chem., Int. Ed. 1975, 14, 744–755.
2,2-Dimethyl-5-(2-fluorobenzyl)-5-nitro-[1,3]-dioxane (7).
Yellow oil. IR (KBr): m (cmꢀ1) 1623 (N@O); 1589 (C@C);
11. Preparation of nitro compounds. General procedure. To a
stirred solution of the nitroacetal (200 mg, 1.05 mmol) in
methanol (10 mL) was added sodium methoxide (97.2 mg,
1.8 mmol). The reaction mixture was stirred for 30 min at
room temperature under an inert atmosphere. After
30 min, the corresponding benzyl chloride (1.05 mmol)
was added and the mixture was heated to reflux, and
irradiated with a 100 W lamp for 24 h. The solvent was
removed, water (15 mL) was added, and the residue was
extracted with CH2Cl2 (3 · 15 mL). The combined organic
extracts were washed with H2O (15 mL), dried over
Na2SO4, the solvent removed on a rotary evaporator
and silica gel column chromatography of the residue
(SiO2, 70–230 mesh, hexane/ethyl acetate) gave the prod-
ucts. Solids were purified by column chromatography,
followed by crystallization (hexane/ethyl acetate). The
yields of the pure compounds are indicated in Scheme 1.
12. (a) Busfield, W. K.; Jenkins, I. D.; Thang, S. H.; Rizzardo,
E.; Solomon, D. H.; Thang, S. H. J. Chem. Soc., Perkin
1
1378 (N–O); 1098 (C–O). H NMR (CDCl3, 200 MHz): d
(ppm) 1.40 (s, 6H, CH3); 4.25 (s, 2H, CH2–O); 4.55 (s, 2H,
CH2–O); 5.12 (s, 2H, CH2–Ar); 7.18 (m, 3H, Ar); 7.28 (m,
1H, Ar). 13C NMR (CDCl3, 50.3 MHz): d (ppm) 24.0
(CH3); 58.1 (CH2, CH2–O); 59.6 (CH2, CH2–O); 69.6
(CH2); 100.3 (C, C-2); 115.1 (CH, J ¼ 21 Hz, C-30); 123.8
(CH, J ¼ 3.6 Hz, C-50); 129.7 (CH, J ¼ 8.2 Hz, C-40); 130.4
(CH, J ¼ 4 Hz, C-60); 156.1 (C, C-10); 161.4 (C, J ¼ 254 Hz,
C-20). Anal. Calcd for C13H16FNO4: C, 57.98; H, 5.98; N,
5.20. Found: C, 58.23; H, 6.21; N, 5.72.
5-(2-bromobenzyl)-2,2-dimethyl-5-nitro-[1,3]-dioxane (8).
Red oil. IR (KBr): m (cmꢀ1) 1643 (N@O); 1578 (C@C);
1
1356 (N–O); 1102 (C–O). H NMR (CDCl3, 200 MHz): d
(ppm) 1.40 (s, 6H, CH3); 3.46 (s, 2H, CH2–Ar); 4.26 (s, 2H,
CH2–O); 4.58 (s, 2H, CH2–O); 7.44 (m, 4H, Ar).
5-Benzyl-2,2-dimethyl-5-nitro-[1,3]-dioxane (9). Yellow
oil. IR (KBr): m (cmꢀ1) 1605 (N@O); 1551 (C@C); 1090
(C–O). 1H NMR (CDCl3, 200 MHz): d (ppm) 1.39 (s, 6H,
CH3); 3.39 (s, 2H, CH2); 4.23 (s, 2H, CH2–O); 4.46 (s, 2H,
CH2–O); 4.55 (s, 2H, CH2–O); 5.06 (s, 2H, CH2–O); 7.34
(m, 5H, Ar); Anal. Calcd for C13H17NO4: C, 62.15; H, 6.82;
N, 5.57. Found: C, 61.95; H, 6.53; N, 5.89.
ꢀ
Trans. 1 1991, 1351–1354; (b) Gimenez-Arnau, E.; Hab-
erkorn, L.; Grossi, L.; Lepoittevin, J.-P. Tetrahedron 2002,
58, 5535–5545.
13. Reduction. To a solution of the nitro compound (2 mmol)
in methanol (20 mL) was added Raney-Ni (50% slurry in
water) (3 mmol). The mixture was stirred at room
temperature under H2 until the starting material had been
consumed or no further reaction was evident (according to
TLC analysis). The catalyst was separated by filtration,
the solvent was removed under reduced pressure and the
residue was subjected to column chromatography (silica
gel, hexane/ethyl acetate) to afford the corresponding
amine.
14. Harrak, Y.; Guillaumet, G.; Pujol, M. D. Synlett 2003,
813–816.
15. Cyclization. (a) A stirred solution of 14 (2 mmol) in a
mixture of trifluoroacetic anhydride/trifluoroacetic acid
1:1 (5 mL) was heated with stirring for 12 h. 2 M NaOH
2,2-Dimethyl-5-(2-nitrobenzylidene)[1,3]-dioxane (10).
Colorless oil. IR (KBr): m (cmꢀ1) 1589 (N@O); 1372 (N–
O); 1098 (C–O). 1H NMR (CDCl3, 200 MHz): d (ppm) 1.44
(s, 6H, CH3); 4.49 (m, 2H, CH2); 5.11 (m, 2H, CH2); 7.17 (t,
J1 ¼ 1.5 Hz, 1H, olefin); 7.54 (m, 3H, Ar); 7.93 (m, 1H, H-
3). 13C NMR (CDCl3, 50.3 MHz): d (ppm) 28.9 (CH3); 32.2
(CH3); 60.2 (CH2–O); 67.8 (CH2–O); 98.7 (C, C-2); 120.2
(CH, C-30); 123.4 (C, C-5); 126.2 (CH, C-40); 127.5 (C, C-
10); 128.5 (CH, C-60); 135.5 (CH, C-50); 140.3 (C, C-20).
Anal. Calcd for C13H15NO4: C, 62.64; H, 6.07; N, 5.62.
Found: C, 62.31; H, 6.34; N, 5.89.
5-Amino-5-(2-aminobenzyl)-2,2-dimethyl-[1,3]-dioxane
(14). Yellow oil. IR (KBr): m (cmꢀ1) 3357 (N–H); 1197