3080
E. Cleator et al. / Tetrahedron Letters 45 (2004) 3077–3080
OPMB
OH
O
OPMB
OH
O
Ph
HO
OH
HO
O
Ph
a,b
c,d
O
OH
O
PenO
O
PenO
PenO
O
13
16
17
Scheme 6. Reagents and conditions: (a) benzaldehyde dimethylacetal, MeCN, CSA (cat), reflux, 1 h, 88%; (b) Bu2SnO, toluene, reflux, 2 h, then
PMB-Cl, TBAI, reflux, 24 h, 79%; (c) (COCl)2, DMSO, Et3N, CH2Cl2, À78 ꢁC fi rt; (d) allylmagnesium bromide, THF, À78 ꢁC, 1 h, 76% over two
steps.
Table 2. Addition of Grignard reagents to ulose 16
Acknowledgements
Entry
Conditions
Yield (%)
We gratefully acknowledge the financial support from
the EPSRC, the BP endowment and a Novartis
Research Fellowship (to S.V.L.).
1
2
3
MeMgBr (3 equiv), THF, À78 ꢁC
EtMgBr (3 equiv), THF, À78 ꢁC
PhMgBr (3 equiv), THF, À78 ꢁC
88
70
67
References and notes
1. Addition to C-3 uloses; (a) Box, L. L.; Roberts, V. G. S.;
Earle, V. E. Carbohydr. Res. 1981, 96, 215; (b) Dyong, I.;
Schulte, G. Chem. Ber. 1981, 114, 1484; (c) Horito, S.;
Asano, K.; Umemura, K.; Hironobu, H.; Yoshimura, J.
Carbohydr. Res. 1983, 121, 175; (d) Yoshimura, J.; Hong,
N.; Sato, K. Chem. Lett. 1980, 1131; (e) Lipshutz, B. H.;
Elworthy, S. L.; Todd, R. Tetrahedron 1988, 11, 3355; (f)
Pietsch, M.; Walter, M.; Buchholz, K. Carbohydr. Res.
1994, 254, 183.
2. Addition to C-4 uloses; (a) Sato, K.; Kubo, K.; Hong, N.;
Kodama, H.; Joshima, J. Bull. Chem. Soc. Jpn. 1982, 3,
938; (b) Chiu, A. K. B.; Hough, L.; Richardson, A. C.;
Toufeili, I. A.; Dziedzic, S. Z. Carbohydr. Res. 1987, 162,
316.
Accordingly, derivative 13 was treated with benzalde-
hyde dimethyl acetal in MeCN at reflux in the presence
of a catalytic amount of CSA to give the 4,6-benzylidene
acetal. Mono-PMB protection of 4,6-benzylidene acetal,
using tin chemistry, was much more selective than with
pyranoside 2 and galactose 13 and occurred in quanti-
tative yield with a 4:1 ratio in favour of the desired C-3
PMB protected alcohol 16.16 Swern oxidation of 16 gave
the unstable ulose, which was directly treated with
allylmagnesium bromide in THF at À78 ꢁC. Analysis of
the crude reaction mixture showed that alcohol 17 had
been formed as a single diastereomer, and could be
isolated after chromatography in 76% yield for the
two steps. The assigned structure was confirmed by
X-ray diffraction analysis of a single crystal of 17
(Scheme 6).
3. Schmeichel, M.; Redlich, H. Synthesis 1996, 1002.
4. Jenkins, D. J.; Potter, B. V. L. Carbohydr. Res. 1994, 265,
145.
€
5. Rekaie, E.; Rubinstenn, G.; Mallet, J. M.; Sinay, P.
Synlett 1998, 831.
6. Yoshimura, J.; Kawauchi, N.; Yasumori, T.; Sato, K.;
Hashimoto, H. Carbohydr. Res. 1984, 133, 255.
7. Manning, D. D.; Bertozzi, C. R.; Rosenand, S. D.;
Kiessling, L. L. Tetrahedron Lett. 1996, 37, 1953.
8. Gurjar, M. K.; Hotha, S. Heterocycles 2000, 53, 1885.
9. (a) Turner, R. M.; Lindell, S. D.; Ley, S. V. J. Org. Chem.
1991, 56, 5739; (b) Turner, R. M.; Lindell, S. D.; Ley, S. V.
Synlett 1993, 748.
To test the generality of the Grignard addition, three
common Grignard reagents were added to the ketone
derived fromsubstrate
16 after Swern oxidation.
All products were generated as single diastereomers
and in good yields (Table 2). It is worth noting that
as the size of Grignard reagent increases the yield
of product drops. The decrease in yield, albeit
small, may be due to the slower reactivity of bulky
Grignards as compared to the very reactive allyl
Grignard reagent.
10. Nicolaou, K. C.; Hwang, C.; Duggan, M. E. J. Am. Chem.
Soc. 1989, 111, 6682.
11. Cappa, A.; Marcantoni, E.; Torregiani, E.; Bartoli, G.;
Bellucci, M. C. J. Org. Chem. 1999, 64, 5696.
12. Hirschmann, R.; Nicolaou, K. C.; Pietranico, S.; Leahy,
E. M.; Salvino, J. J. Am. Chem. Soc. 1993, 115, 12550.
13. Barton, D. R. H. J. Chem. Soc., Perkin Trans. 1 1975, 495.
14. Udodong, U. E.; Rao, C. S.; Fraser-Reid, B. Tetrahedron
1992, 48, 4713.
In summary, we have shown that 2-uloses derived from
a number of modified carbohydrates undergo stereo-
selective reactions with allylmagnesium bromide. By
appropriate choice of carbohydrate starting material
and a suitable protection strategy enantiopure C-2 ter-
tiary alcohols can be prepared in excellent yields froma
variety of Grignard reagents.
15. As suggested by a referee.
16. Rekaie, E.; Rubinstenn, G.; Mallet, J. M.; Sinay, P.
Synlett 1998, 831.
€