SYNTHESIS OF PYRROLYL-PHENOLS
2953
1-C), 151.2 (d, J ¼ 244.4 Hz, 2-C); Anal. calcd. for C6H7ClFNO: C, 44.06; H, 4.31;
N, 8.56. Found: C, 43.75; H, 4.45; N, 8.20.
Preparation of 2-Fluoro-4-(1H-pyrrol-1-yl)phenol (4)
A mixture of 4-amino-2-fluorophenol hydrochloride (4a ꢀ HCl) (164 mg,
1.0 mmol), 2,5-dimethoxytetrahydrofurane (213 mg, 1.61 mmol), and nicotinamide
(192 mg, 1.57 mmol) in 1,4-dioxane (17 mL) was stirred and refluxed under a nitro-
gen atmosphere for 4 h. The resulting mixture was cooled to room temperature
and concentrated under reduced pressure. The residue was gradually extracted in
CH2Cl2 (5 ꢃ 15 mL) with the aid of ultrasound irradiation (5 min) during the process
of each extraction. The combined organic extracts were concentrated under reduced
pressure, and the residue was subject to flash chromatography with a mixture of pet-
roleum ether=ethyl acetate 9:1 to yield 133 mg (75%) of 4. An analytical sample was
prepared by recrystallization from CH2Cl2=petroleum ether; mp 89 ꢁC; IR 3392
1
(OH) cmꢂ1; H NMR (CDCl3): d 5.19 (br s, 1H, OH), 6.31–6.42 (m, 2H, pyrrolyl
3-H & 4-H), 6.96–7.19 (m, 5H, phenyl H and pyrrolyl 2-H & 5-H); 13C NMR
(CDCl3): d 108.9 (d, J ¼ 21.5 Hz, phenyl 3-C), 110.4 (s, pyrrolyl 3-C & 4-C), 117.1
(d, J ¼ 3.4 Hz, phenyl 6-C), 117.8 (d, J ¼ 2.7 Hz, 5-C), 119.6 (s, pyrrolyl 2-C &
5-C), 134.4 (d, J ¼ 8.5, phenyl 4-C), 141.4 (d, J ¼ 14.3 Hz, phenyl 1-C), 150.9 (d,
J ¼ 238.6 Hz, phenyl 2-C). Anal. Calcd. for C10H8FNO: C, 67.79; H, 4.55; N,
7.91. Found: C, 67.61; H, 4.49; N, 7.46.
Supporting Information
1
Full experimental details (1–3 and 5) and H and 13C NMR spectra (4a ꢀ HCl
and 4) can be found via the Supplementary Content section of this article’s Web page.
REFERENCES
1. (a) Nicolaou, I.; Zika, C.; Demopoulos, V. J. J. Med. Chem. 2004, 47, 2706–2709; (b)
Pegklidou, K.; Koukoulitsa, C.; Nicolaou, I.; Demopoulos, V. J. Bioorg. Med. Chem.
2010, 18, 2107–2114; (c) Chatzopoulou, M.; Mamadou, E.; Juskova, M.; Koukoulitsa,
C.; Nicolaou, I.; Stefek, M.; Demopoulos, V. J. Bioorg. Med. Chem. 2011, 19, 1426–1433.
2. Oliver, J. E.; Lusby, W. R.; Waters, R. M. J. Heterocycl. Chem. 1991, 28, 1565–1568.
3. (a) Bouyazza, L.; Lancelot, J.-C.; Rault, S.; Robba, M. J. Heterocycl. Chem. 1991, 28,
77–80; (b) Cardinaud, I.; Gueiffier, A.; Debouzy, J.-C.; Milhavet, J.-C.; Chapat, J.-P. Het-
erocycles 1993, 36, 2513–2522.
4. (a) Nicolaou, I.; Demopoulos, V. J. J. Med. Chem. 2003, 46, 417–426; (b) Rochais, C.;
Lisowski, V.; Dallemagne, P.; Rault, S. Bioorg. Med. Chem. 2006, 14, 8162–8175; (c)
Rochais, C.; Sopkova-de Oliveira Santos, J.; Dallemagne, P.; Rault, S. Heterocycles
2006, 68, 2063–2077; (d) Alexiou, P.; Demopoulos, V. J. J. Med. Chem. 2010, 53, 7756–
7766; (e) Diana, P.; Stagno, A.; Barraja, P.; Montalbano, A.; Carbone, A.; Parrino, B.;
Cirrincione, G. Tetrahedron 2011, 67, 3374–3379; (f) Aiello, F.; Garofalo, A.; Grande,
F. Tetrahedron Lett. 2011, 52, 5824–5826.
5. Kennedy, B.; Glidle, A.; Cunnane, V. J. J. Electroanal. Chem. 2007, 608, 22–30.
6. Fischer, A.; Galloway, W. J.; Vaughan, J. J. Chem. Soc. 1964, 3591–3596.
7. Altun, Y. J. Solution Chem. 2004, 33, 479–497.