August 2014
Ultrasound-Assisted One-pot Synthesis of Bis-azetidinones in the Presence of Zeolite
E187
126.2, 129.1, 130.3, 151.7, 159.2 for aromatic carbons; mass spectra,
m/z=618 (M+, 100%), elemental analysis: Calcd (found): C, 66
(66.4); H, 4.24 (4.27); N, 9.06 (9.01).
CONCLUSION
In summary, we report the synthesis of different substi-
tuted bis-2-azetidinones via Staudinger cycloaddition
between keten and Schiff base that was performed in
milder conditions under ultrasonic irradiation in the pres-
ence of zeolite that was of a high product yield and
enhance product purity with a shorter reaction time, easier
work-up, and environmentally friendly character compared
with previous conventional synthetic methods in the litera-
ture. Hence, the present method is an ample scope for
further study in developing these as good lead one-pot
methodology.
3,30-(Ethane-1,2-diyl)bis(1-(benzothiazol-2-yl)-4-(4-methoxyphenyl)
azetidin-2-one) (2e). IR (KBr, cmꢀ1): 1758 (C═O b-lactam), 1366
1
(C-N); H NMR (300 MHz, CDCl3) d (ppm) = 1.54 (d, 4H, -CH2-
CH2-); 5.2 (m, 2H, O═C-CH<); 4.68 (d, 2H, >N-CH<); 7.2–8.2
(m, 16H, Ar-H); 3.93 (s, 6H, OCH3); 13C NMR: d 56 (-CH3), 28.4
(-CH2), 45.5 (-CH2-C═O), 61 (>CH-N<), 164.5 (N═C<), 168.3
(>C═O), 117.9, 120.3, 122, 125, 126.5, 127.5, 129.9, 131.1,
153.2, 162 for aromatic carbons; mass spectra, m/z = 646 (M+,
100%), elemental analysis: Calcd (found): C, 66.85 (66.75); H,
4.68 (4.7); N, 8.66 (8.59).
3,30-(Ethane-1,2-diyl)bis(1-(benzothiazol-2-yl)-4-(3-hydroxyphenyl)
azetidin-2-one) (2f).
IR (KBr, cmꢀ1): 1745 (C═O b-lactam),
1
1353 (C-N); H NMR (300 MHz, CDCl3) d (ppm) = 1.72 (d, 4H,
-CH2-CH2-); 5.2 (m, 2H, O═C-CH<); 4.31 (d, 2H, >N-CH<);
7.2–8.2 (m, 16H, Ar-H); 10.89 (s, 2H, Ar-OH); 13C NMR: d 27.4
(-CH2), 48.4 (-CH2-C═O), 61.7 (>CH-N<), 163 (N═C<), 165.9
(>C═O), 116.4, 117.4, 122.4, 122.1, 126.2, 126.3, 129.3, 130.5,
152.1, 159 for aromatic carbons; mass spectra, m/z = 618 (M+,
100%), elemental analysis: Calcd (found): C, 66 (66.7); H, 4.24
(4.19); N, 9.06 (9.01).
Acknowledgments. We greatly acknowledge the head of the
Department of Chemistry, Rashtrasant Tukadoji Maharaj Nagpur
University, Nagpur (India) for laboratory facilities and the director
of SAIF Chandigarh (India) for providing necessary spectral data
of compounds.
3,30-(Ethane-1,2-diyl)bis(1-(benzothiazol-2-yl)-4-(3-chlorophenyl)
REFERENCES AND NOTES
azetidin-2-one) (2g).
IR (KBr, cmꢀ1): 1760 (C═O b-lactam),
1
1364 (C-N); H NMR (300 MHz, CDCl3) d (ppm) = 1.61 (d, 4H,
-CH2-CH2-); 5.1 (m, 2H, O═C-CH<); 4.6 (d, 2H, >N-CH<);
7.2–8.2 (m, 16H, Ar-H); 13C NMR: d 28.1 (-CH2), 46.9 (-CH2-
C═O), 61.1 (>CH-N<), 165.1 (N═C<), 168.4 (>C-O), 118.9,
119.8, 122.5, 124.6, 125.9, 127.5, 129.4, 131.6, 153, 161.1
for aromatic carbons; mass spectra, m/z= 654 (M+, 100%),
elemental analysis: Calcd (found): C, 62.29 (62.21); H, 3.69 (3.72);
N, 8.55 (8.59).
[1] Vanden Eynde, J. J.; Mutonkole, K.; Van Haverbeke, Y. Ultra-
son Sonochem 2001, 8, 35.
[2] (a) Holden, K. G. In Chemistry and Biology of b-lactam anti-
biotics; Morin, R. B., Gorman, M., Eds.; Academic, London, 1982, 2,
114; (b) Aronica, L. A.; Caporusso, A. M. J Organometallic Chemistry,
2012, 700, 20; (c) Woźnica, M.; Frelek, J. J Org Chem 2011, 76, 3306.
[3] Mata, E. G.; Fraga, M. A.; Delpiccolo, C. M. L. J Comb Chem
2003, 5, 208.
[4] Pawar, R. P.; Andurkar, N. M.; Vibhute, Y. B. J Indian Chem
Soc 1999, 76, 271.
3,30-(Ethane-1,2-diyl)bis(1-(benzothiazol-2-yl)-4-(4-chlorophenyl)
IR (KBr, cmꢀ1): 1736 (C═O b-lactam),
[5] Gootz, T. D. Clin Microbiol Rev 1990, 3, 13.
[6] Maiti, S. N. Top Heterocycl Chem 2006, 2, 207.
[7] Singh, G. S. Mini Rev Med Chem 2004, 4, 69.
azetidin-2-one) (2h).
1
1347 (C-N); H NMR (300 MHz, CDCl3) d (ppm) = 1.59 (d, 4H,
-CH2-CH2-); 5.1 (m, 2H, O═C-CH<); 4.58 (d, 2H, >N-CH<);
7.2–8.2 (m, 16H, Ar-H); 13C NMR: d 28.6 (-CH2), 46.5 (-CH2-
C═O), 60.8 (>CH-N<), 164.9 (N═C<), 168 (>C═O), 118.1,
120, 122.1, 124.9, 126, 127.1, 129.5, 131.2, 153.9, 162.1 for
aromatic carbons; mass spectra, m/z = 654 (M+, 100%),
elemental analysis: Calcd (found): C, 62.29 (62.25); H, 3.69
(3.77); N, 8.55 (8.56).
[8] Singh, G. S. Mini Rev Med Chem 2004, 4, 93.
[9] Risi, C. D.; Pollini, G. P.; Veronese, A. C.; Bertolasi,
V. Tetrahedron Lett 1999, 4, 6995.
[10] G. I. Georg (Ed.), The Organic Chemistry of b -Lactams;
VCH: New York, 1993.
[11] Abdulla, R. F.; Fuhr, K. H. J Med Chem 1975, 18, 625.
[12] Durckheimer, W.; Blumbach, J.; Lattrell, R.; Scheunemann,
K. H. Angew Chem Int Ed Engl 1985, 24, 180.
[13] Burnett, D. A.; Caplen, M. A. Jr.; Davis, H. R.; Burrrier,
R. E.; Clader, J. W. J Med Chem 1994, 37, 1733.
[14] Bergman, M.; Morales, H.; Mellars, L.; Kosoglou, T.; Burrier,
R.; Davis, H. R.; Sybertz, E. J.; Pollare, T. 12th International Symposium
on drugs affecting lipid metabolism, Houston, TX, Nov. 7-10, 1995.
[15] Slusarchyk, W. A.; Bolton, S. A.; Hartl, K. S.; Huang,
M. H.; Jacobs, G.; Meng, W., Ogletree, M. L.; Pi, Z.; Schumacher,
W. A.; Seiler, S. M.; Sutton, J. C.; Treuner, U.; Zahler, R.; Zhao,
G.; Bisacchi, G. S. Bioorg Med Chem Lett 2002, 12, 3235.
[16] Han, W. T.; Trehan, A. K.; Wright, J. J. K.; Federici,
M. E.; Seiler, S. M.; Meanwell, N. A. Bioorg Med Chem 1995, 3, 1123.
[17] Guillon, C. D.; Koppel, A.; Brownstein, M. J.; Chaney, M. O.;
Ferris, C. F., Lu, S. -F.; Fabio, K. M.; Miller, M. J.; Heindel, N. D. Bioorg
Med Chem 2007, 15, 2054.
3,30-(Ethane-1,2-diyl)bis(1-(benzothiazol-2-yl)-4-(4-nitrophenyl)
azetidin-2-one) (2i). IR (KBr, cmꢀ1): 1734 (C═O b-lactam), 1336
1
(C-N); H NMR (300 MHz, CDCl3) d (ppm) = 1.79 (d, 4H, -CH2-
CH2-); 5.1 (m, 2H, O═C-CH<); 4.81 (d, 2H, >N-CH<); 7.3–8.2
(m, 16H, Ar-H); 13C NMR: d 29.1 (-CH2), 47.2 (-CH2-C═O),
60.9 (>CH-N<), 166 (N═C<), 167.8 (>C═O), 117.6, 119.2,
123.1, 124.9, 126.5, 128.1, 130.1, 132, 152.8, 162.2 for aromatic
carbons; mass spectra, m/z =676 (M+, 100%), elemental analysis:
Calcd (found): C, 60.34 (60.28); H, 3.57 (3.52); N,12.42 (12.5).
3,30-(Ethane-1,2-diyl)bis(1-(benzothiazol-2-yl)-4-m-tolylazetidin-
2-one) (2j). IR (KBr, cmꢀ1): 1746 (C═O b-lactam), 1354 (C-N);
1H NMR (300 MHz, CDCl3) d (ppm) = 1.59 (d, 4H, -CH2-CH2-);
5.0 (m, 2H, O═C-CH<); 4.61 (d, 2H, >N-CH<); 7.2–8.2
(m, 16H, Ar-H); 2.4 (s, 6H, -CH3)13C NMR: d 22.6 (-CH3),
28.2 (-CH2), 45.9 (-CH2-C═O), 61.2 (>CH-N<), 164.7
(N═C<), 167.9 (>C═O), 117.5, 120, 121.8, 124.8, 126.8,
128, 129.4, 131.9, 153, 162.9 for aromatic carbons; mass spectra,
m/z=614 (M+, 100%), elemental analysis: Calcd (found): C, 70.33
(70.39); H, 4.92 (4.87); N, 9.11 (9.07).
[18] Srivastava, S. K.; Srivastava, S.; Srivastava, S. D. Ind J Chem
1999, 38B, 183.
[19] Knight, W. B.; Green, B. G.; Chabin, R. M.; Gale,
P.; Maycock, A. L.; Weston, H.; Kuo, D. W.; Westler, W. M.; Dorn,
C. P.; Finke, P. E.; Hagmann, W. K.; Hale, J. J.; Liesch, J.; MacCoss,
M.; Navia, M. A.; Shah, S. K.; Underwood, D.; Doherty, J. B. Biochemistry
1992, 31, 8160.
Journal of Heterocyclic Chemistry
DOI 10.1002/jhet