5200
P. A. Brough et al. / Bioorg. Med. Chem. Lett. 15 (2005) 5197–5201
3. Neckers, L.; Ivy, S. P. Curr. Opin. Oncol. 2003, 15, 419.
4. Solit, D. B.; Scher, H. I.; Rosen, N. Semin. Oncol. 2003,
30, 709.
5. Whitesell, L.; Bagatell, R.; Falsey, R. Curr. Cancer Drug
Targets 2003, 3, 349.
6. Kelland, L. R.; Sharp, S. Y.; Rogers, P. M.; Myers, T. G.;
Workman, P. J. Natl. Cancer Inst. 1999, 91, 1940.
7. Schulte, T. W.; Neckers, L. M. Cancer Chemother.
Pharmacol. 1998, 42, 273.
8. Schulte, T. W.; Akinaga, S.; Soga, S.; Sullivan, W.;
Stensgard, B.; Toft, D.; Neckers, L. M. Cell Stress.
Chaperones 1998, 3, 100.
9. Neckers, L.; Schulte, T. W.; Mimnaugh, E. Invest. New
Drugs 1999, 17, 361.
10. Kaur, G.; Belotti, D.; Burger, A. M.; Fisher-Nielson, K.;
Borsotti, P.; Riccardi, E.; Thillainathan, J.; Hollingshead,
M.; Sausville, E. A.; Giavazzi, R. Clin. Cancer Res. 2004,
10, 4813.
Figure 5. Western blot showing increases in Hsp70 and decrease in
Her2 and Raf-1 following exposure of HCT116 cells to 14h and 1b.
The crystal structure of 14h also reveals a new channel cre-
ated at the interface between a-helices 2 and 7, at the bot-
tom of the ATP binding pocket. This is the result of a
displacement of the side chain of Leu48, which is relative-
ly minor but sufficient to leave space for a chain of 3 water
molecules hydrogen bonded to the ligand and the protein
(Fig. 3). This channel has never been reported before,
although we have noted that the PDB structure 1YC326
presents an occluded water molecule at a position corre-
sponding to the bottom of the channel. The implications
of this channel for ligand recognition or biological func-
tion of Hsp90 are unclear, but its potential exploitability
for ligand binding should receive further consideration.
11. Hostein, I.; Robertson, D.; DiStefano, F.; Workman, P.;
Clarke, P. A. Cancer Res. 2001, 15, 4003.
12. Banerji, U.; OꢁDonnell, A.; Scurr, M.; Pacey, S.; Staple-
ton, S.; Asad, Y.; Simmons, L.; Maloney, A.; Raynaud,
F.; Campbell, M.; Walton, M.; Lakhani, S.; Kaye, S.;
Workman, P.; Judson, I. J. Clin. Oncol. 2005, 23, 4152.
13. Goetz, M. P.; Toft, D.; Reid, J.; Ames, M. M.; Stensgard,
B.; Safgren, S.; Sloan, J.; Atherton, P.; Vasile, V.;
Salazaar, S.; Adjei, A.; Croghan, G.; Erlichman, C.
J. Clin. Oncol. 2005, 23, 1078.
14. Grem, L.; Morrison, G.; Guo, X.-D.; Agnew, E.; Takim-
oto, C. H.; Thomas, R.; Szabo, E.; Growchow, L.;
Grollman, F.; Hamilton, J. M.; Neckers, L.; Wilson, R.
H. J. Clin. Oncol. 2005, 1885.
15. Workman, P. Cancer Lett. 2004, 206, 149.
16. Dymock, B. W.; Drysdale, M.; McDonald, E.; Workman,
P. Expt. Opin. Ther. Patents 2004, 14, 837.
17. Kasibhatla, S. R.; Boehm, M. F.; Hong, K. D.; Biamonte,
M. A.; Shi, J.; Le Brazidec, J.-Y.; Zhang, L.; Hurst, D.
PCT Int. Appl., W0 2005/028434, 2005.
To support the premise that the disclosed effects on cell
growth were via Hsp90 inhibition, Western blotting was
used to study the effect of 14h and 17-AAG (1b) on in vi-
tro cellular levels of Hsp70, Her2, Raf-1, and CDK4 in
HCT116 cells (GAPDH used as a loading control). Fig-
ure 5 shows that 14h causes induction of Hsp70 (at 1, 2,
and 4 times GI50) and knock down of Raf-1 and Her2
(at 2 and 4 times GI50). CDK4 gave partial knock down
at 8 times GI50 (data not shown). The observed changes
are consistent with the known molecular signature of
Hsp90 inhibition.35,36
18. Vilenchik, M.; Solit, D.; Basso, A.; Huezo, H.; Lucas, B.;
He, H.; Rosen, N.; Spampinato, C.; Modrich, P.; Chiosis,
G. Chem. Biol. 2004, 11, 787.
19. Cheung, K.-M. J.; Matthews, T. P.; James, K.; Rowlands,
M. J.; Boxall, K. J.; Sharp, S. Y.; Maloney, A.; Roe, S.
M.; Prodromou, C.; Pearl, L.; Aherne, W.; McDonald, E.;
Workman, P. Bioorg. Med. Chem. Lett. 2005, 15, 3338.
20. Dymock, B. W.; Barril, X.; Brough, P. A.; Cansfield, J. E.;
Massey, A.; McDonald, E.; Hubbard, R. E.; Surgenor, A.;
Roughley, S.; Webb, P.; Workman, P.; Wright, L.;
Drysdale, M. J. Med. Chem. 2005, 48, 4212.
21. Llauger, L.; He, H.; Kim, J.; Aguirre, J.; Rosen, N.; Peters,
U.; Davies, P.; Chiosis, G. J. Med. Chem. 2005, 48, 2892.
22. Dymock, B.; Barril, X.; Beswick, M.; Collier, A.; Davies,
N.; Drysdale, M.; Fink, A.; Fromont, C.; Hubbard, R. E.;
Massey, A.; Surgenor, A.; Wright, L. Bioorg. Med. Chem.
Lett. 2004, 14, 325.
In conclusion, we have utilized structure-based drug de-
sign to assist in the design and rationalization of Hsp90
inhibitors. The backboneof residuePhe138hasbeen iden-
tified as an additional interaction point to increase bind-
ing potency. This structural information may be useful
to help design new inhibitors of the Hsp90 chaperone.
Crystallographic coordinates have been deposited with
the Protein Data Bank: [14h PDB code: 2BYH; 14o
PDB code: 2BYI]
23. Beswick, M. C.; Brough, P. A.; Drysdale, M. J.; Dymock,
B. W., PCT Int Appl. WO 2004/050087, 2004.
Supplementary Information
24. Wright, L.; Barril, X.; Dymock, B.; Sheridan, L.; Surg-
enor, A.; Beswick, M.; Drysdale, M.; Collier, A.; Massey,
A.; Davies, N.; Fink, A.; Fromont, C.; Aherne, W.;
Boxall, K.; Sharp, S.; Workman, P.; Hubbard, R. E.
Chem. Biol. 2004, 11, 775.
Full experimental procedures for the synthesis of 14h are
available. In addition a protocol for the Fluorescent
Polarization assay is provided.
25. Stebbins, C. E.; Russo, A. A.; Schneider, C.; Rosen, N.;
Hartl, F. U.; Pavletich, N. P. Cell 1997, 89, 239.
26. Kreusch, A.; Han, S.; Brinker, A.; Zhou, V.; Choi, H. S.;
He, Y.; Lesley, S. A.; Caldwell, J.; Gu, X. J. Bioorg. Med.
Chem. Lett. 2005, 15, 1475.
References and notes
1. Jolly, C.; Morimoto, R. I. J. Natl. Cancer Inst. 2000, 92,
1564.
2. Workman, P. Curr. Cancer Drug Targets 2003, 3, 297.
27. A protocol for the Fluorescent Polarization assay is
provided in the Supplementary Information Section. In