N. G. Argyropoulos, V. C. Sarli / Tetrahedron Letters 45 (2004) 4237–4240
4239
2. Carbohydrate Mimics; Chapleur, Y., Ed.; Wiley VCH:
Weinheim, 1998.
3. Johnson, C. R.; Miller, M. W.; Golebiowski, A.; Sun-
dram, H.; Ksebati, M. B. Tetrahedron Lett. 1994, 35,
8991–8994.
4. Johns, B. A.; Pan, Y. T.; Elbein, A. D.; Johnson, C. R.
J. Am. Chem. Soc. 1997, 119, 4856–4865.
5. Martin, O. R.; Liu, L.; Yang, F. Tetrahedron Lett. 1996,
37, 1991–1994.
H1a
H2
O
OH
H1b
O
H3
H4
O
O
H2
1.5%
H3
H4
H5
H5
CH2OAc
CH2OAc
H1b
1.5%
H11
H6
O
H11
O
H6
O
CH2
N
N
H1a
Bn
HO
H7
O
Ph
O
H7
0.7%
O
O
H10
H10
O
O
H8
H8
6. Dondoni, A.; Giovannini, P. P.; Marra, A. Tetrahedron
Lett. 2000, 41, 6195–6199.
H9
H9
O
O
7. Leeuwenburgh, M. A.; Picasso, S.; Overkleeft, H. S.; van
der Marel, G. A.; Vogel, P.; van Boom, J. H. Eur. J. Org.
Chem. 1999, 1185–1189.
8. Cheng, X.; Kumaran, G.; Mootoo, D. R. Chem. Commun.
2001, 81–812.
9
7
Figure 1. Representative NOE and ROESY interactions observed for
cycloadduct 7 and aza-C-disaccharide derivative 9.
9. Baudat, A.; Vogel, P. Tetrahedron Lett. 1996, 37, 483–484.
10. Baudat, A.; Vogel, P. J. Org. Chem. 1997, 62, 6252–6260.
11. Frenot, E.; Marquis, C.; Vogel, P. Tetrahedron Lett. 1996,
37, 2023–2026.
12. Kraehenbuehl, K.; Picasso, S.; Vogel, P. Helv. Chim. Acta
1988, 81, 1439–1479.
illustrated in Scheme 2 and is in accordance with that
observed from other analogous reactions of nitrones
with a,b-unsaturated esters.27
The stereochemistry of the final product is obviously
determined by the stereochemical course of the cyclo-
addition step, in particular by the reacting form of nit-
rone 3 (Z or E) in combination with a possible exo/endo
and p facial selectivity. In principle four diastereomers
are possible, by altering either the nitrone stereochem-
istry or the approaching mode.
13. Marquis, C.; Picasso, S.; Vogel, P. Synthesis 1999, 1441.
14. Vogel, P. Curr. Org. Chem. 2000, 4, 455–480, and
references cited therein.
15. Zhu, Y. H.; Vogel, P. Chem. Commun. 1999, 1873–1874.
16. Navarro, I.; Vogel, P. Helv. Chim. Acta 2002, 85, 152–160.
17. Zhu, Y. H.; Vogel, P. J. Org. Chem. 1999, 64, 666–669.
18. Duff, F. J.; Vivien, V.; Wightman, R. H. Chem. Commun.
2000, 2127–2128.
19. Cardona, F.; Valenza, S.; Picasso, S.; Goti, A.; Brandi, A.
J. Org. Chem. 1998, 63, 7311–7318.
20. Gypser, A.; Flasche, M.; Scharf, H. D. Liebigs Ann. Chem.
1994, 775–780.
The stereochemistry of the starting nitrone 3 was
determined by NOE experiments. Irradiation of the
azomethine proton resulted in a significant enhancement
(ꢀ12%) of the benzylic proton signals, indicative of a Z-
form of nitrone 3.
21. Selected spectroscopic data for compound 3: 1H NMR
(300 MHz, CDCl3) d 0.02 (3H, s, SiCH3), 0.03 (3H, s,
SiCH3), 0.95 (9H, s, C(CH3)3), 1.36 (3H, s, CH3), 1.47
(3H, s, CH3), 3.51 (1H, dd, J ¼ 3:9, 11.5 Hz, CH2OT-
BDMS), 3.67 (1H, dd, J ¼ 3:4, 11.5 Hz, CH2OTBDMS),
4.51 (1H, ddd, J ¼ 3:4, 3.9, 6.4 Hz, CH–O), 4.86 (1H, s,
NCHPh), 4.87 (1H, s, NCHPh), 5.36 (1H, dd, J ¼ 5:4,
6.4 Hz, CH–O), 6.93 (1H, d, J ¼ 5:4 Hz, CH@N), 7.39–
7.47 (5H, m, C6H5). 13C NMR (75 MHz, CDCl3) d )5.4,
)5.3, 18.2, 24.5, 25.9, 26.7, 62.3, 69.0, 72.5, 78.9, 109.2,
128.3, 128.9, 129.3, 132.4, 138.1. HRMS (MALDI-FTMS)
m=z obsd. 402.2087 calcd for C20H33NO4SiNa (MNaþ)
The absolute configuration of the new stereogenic centre
at the C-3 of the isoxazolidine ring was assigned using
proton decoupling, NOE and ROESY experiments,
carried out on compounds 7 and 9 (Fig. 1). ROESY
correlation peaks were observed between H-4 and H-6
of compound 7, which indicated their cis arrangement.
On the other hand, the absence of coupling between H-3
and H-4 in compound 9 suggests a dihedral angle of
ꢀ90ꢁ consistent with a trans arrangement. This is also
supported by the observed NOE interactions between
H-3 and H-5.
402.2071 ½aꢁ )106.8 (c 1.96, CHCl3).
D
22. Valverde, S.; Martin-Lomas, M.; Herradon, B.; Garcia-
Ochoa, S. Tetrahedron 1987, 43, 1895–1901.
23. Selected spectroscopic data for compound 7: 1H NMR
(600 MHz, CDCl3) d 1.34 (9H, s, CH3), 1.45 (3H, s, CH3),
1.49(3H, s, CH 3), 1.53 (3H, s, CH3), 2.08 (3H, s, COCH3),
3.24 (1H, m, H-5), 3.54 (1H, m, H-1), 3.65 (1H, m, H-1),
3.95 (1H, t, J ¼ 5:3 Hz, H-4), 4.04 (1H, d, J ¼ 8:8 Hz, H-
6), 4.11 (1H, d, J ¼ 13:2 Hz, NCHPh), 4.17 (1H, d,
J ¼ 9:2 Hz, H-8), 4.19(1H, dd, J ¼ 6:1, 11.6 Hz, H-2),
4.24 (1H, dd, J ¼ 6:4, 10.9Hz, CHOAc), 4.28 (1H, d,
J ¼ 13:2 Hz, NCHPh), 4.36 (1H, dd, J ¼ 1:7, 5.3 Hz, H-
10), 4.38–4.45 (3H, m, CHOAc, H-7, H-3), 4.47 (1H, br s,
OH), 4.62 (1H, dd, J ¼ 2:2, 7.9Hz, H-9), 5.59 (1H, d,
J ¼ 5:3 Hz, H-11), 7.27 (1H, t, J ¼ 7:9Hz, Ph–H), 7.32
(2H, t, J ¼ 7:4, 7.9Hz, Ph–H), 7.37 (2H, d, J ¼ 7:4 Hz,
Ph–H). 13C NMR (75 MHz, CDCl3) d 20.9, 24.5, 24.7,
25.5, 26.0, 27.4, 46.0, 60.7, 62.9, 63.7, 65.1, 65.5, 70.1, 71.1,
72.2, 77.2, 77.5, 96.7, 108.1, 108.7, 109.6, 127.6, 128.4,
129.6, 136.6, 170.5. Anal. Calcd for C30H43NO11 MW
593.284: C ¼ 60.70%, H ¼ 7.30%, N ¼ 2.36%; found
C ¼ 60.31%, H ¼ 7.23%, N ¼ 2.26%. HRMS (MALDI-
All these data are in accordance with the assumption
that the cycloaddition step follows an exo-attack of the
sugar alkene to the Re face of sugar Z-nitrone 3, al-
though the alternative endo mode to the Re face of sugar
E-nitrone can not be excluded.
Further work is in progress using other sugar alkenes in
order to clarify the stereochemical consequences in this
synthetic scheme and to obtain other branched chain
aza-C-disaccharide derivatives.
References and notes
€
1. Iminosugars as Glycosidase Inhibitors; Stutz, A. F., Ed.;
Wiley VCH: Weinheim, 1999.