Gorka et al.
CRT protein determined the stereospecific activity of antimalarial Cin-
chona alkaloids. Antimicrob. Agents Chemother. 56:5356–5364.
13. Sidhu AB, Valderramos SG, Fidock DA. 2005. pfmdr1 mutations con-
tribute to quinine resistance and enhance mefloquine and artemisinin
sensitivity in Plasmodium falciparum. Mol. Microbiol. 57:913–926.
14. Ferdig MT, Cooper RA, Mu J, Deng B, Joy DA, Su XZ, Wellems TE.
2004. Dissecting the loci of low-level quinine resistance in malaria para-
sites. Mol. Microbiol. 52:985–997.
15. Cooper RA, Lane KD, Deng B, Mu J, Patel JJ, Wellems TE, Su X, Ferdig
MT. 2007. Mutations in transmembrane domains 1, 4 and 9 of the Plas-
modium falciparum chloroquine resistance transporter alter susceptibility
to chloroquine, quinine and quinidine. Mol. Microbiol. 63:270–282. (Er-
ratum, 64:1139–1148.).
16. Roepe PD. 2011. PfCRT-mediated drug transport in malarial parasites.
Biochemistry 50:163–171.
17. Sidhu AB, Verdier-Pinard D, Fidock DA. 2002. Chloroquine resistance
in Plasmodium falciparum malaria parasites conferred by pfcrt mutations.
Science 298:210–213.
18. Cabrera M, Paguio MF, Xie C, Roepe PD. 2009. Reduced digestive
vacuolar accumulation of chloroquine is not linked to resistance to chlo-
roquine toxicity. Biochemistry 48:11152–11154.
inhibit hemozoin formation. Similar to QN, the 9-epimers may
tom). Regardless, the antiplasmodial, hemozoin inhibition, heme
binding, heme aggregation, and Evans method data discussed
above suggest that, for the QN isomer pairs, interaction with mo-
nomeric FPIX (and, thus, the monomeric adduct structure) is
more important for hemozoin inhibition than interaction with
-oxo dimeric FPIX. However, taken in their entirety, our data
suggest that these structures are not as relevant for the cytocidal
(parasite cell-killing) activity of Cinchona alkaloids as they are for
cytostatic (growth-inhibition) activity. We suggest that for both
[20]), complete optimization of in vivo activity will require defi-
nition of their cytocidal targets, as well as the mechanism(s) of
cytocidal drug resistance.
ACKNOWLEDGMENTS
19. Paguio MF, Bogle KL, Roepe PD. 2011. Plasmodium falciparum resis-
tance to cytocidal versus cytostatic effects of chloroquine. Mol. Biochem.
Parasitol. 178:1–6.
20. Gorka AP, Alumasa JN, Sherlach KS, Jacobs LM, Nickley KB, Brower
JP, de Dios AC, Roepe PD. 2013. Cytostatic versus cytocidal activities of
chloroquine analogues and inhibition of hemozoin crystal growth. Anti-
microb. Agents Chemother. 57:356–364.
21. Karle JM, Karle IL, Gerena L, Milhous WK. 1992. Stereochemical
evaluation of the relative activities of the cinchona alkaloids against Plas-
modium falciparum. Antimicrob. Agents Chemother. 36:1538–1544.
22. Warhurst DC, Craig JC, Adagu IS, Meyer DJ, Lee SY. 2003. The
relationship of physico-chemical properties and structure to the differen-
tial antiplasmodial activity of the cinchona alkaloids. Malaria J. 2:26. doi:
23. Dinio T, Gorka AP, McGinniss A, Roepe PD, Morgan JB. 2012. Inves-
tigating the activity of quinine analogs versus chloroquine resistant Plas-
modium falciparum. Bioorg. Med. Chem. 20:3292–3297.
We thank Jeremy Morgan and Theresa Dinio (University of North Caro-
lina, Wilmington, NC) for providing QN structural analogs, Roland Coo-
per (Dominican University) for providing strain K76I, John Alumasa
(The Pennsylvania State University) for helpful advice, Ansley Brown
(University of South Florida Morsani College of Medicine) for technical
assistance, and the Georgetown University Chemistry Department for
synthetic chemistry support.
Financial support was received from NIH grant R0I AI056312.
REFERENCES
1. World Health Organization. 2010. World malaria report 2010. World
2. Roepe PD. 2009. Molecular and physiologic basis of quinoline drug re-
sistance in Plasmodium falciparum malaria. Future Microbiol. 4:441–455.
3. Cheeseman IH, Miller BA, Nair S, Nkhoma S, Tan A, Tan JC, Al Saai 24. Sidorowicz L, Skarzewski J. 2011. Easy access to 9-epimers of Cinchona
S, Phyo AP, Moo CL, Lwin KM, McGready R, Ashley E, Imwong M,
Stepniewska K, Yi P, Dondorp AM, Mayxay M, Newton PN, White NJ,
alkaloids: one-pot inversion by Mitsunobu esterification-saponification.
Synthesis 5:708–710.
Nosten F, Ferdig MT, Anderson TJ. 2012. A major genome region 25. Trager W, Jensen JB. 1976. Human malaria parasites in continuous
underlying artemisinin resistance in malaria. Science 336:79–82. culture. Science 193:673–675.
4. Wells TN, Alonso PL, Gutteridge WE. 2009. New medicines to improve 26. Bennett TN, Paguio M, Gligorijevic B, Seudieu C, Kosar AD, Davidson
control and contribute to the eradication of malaria. Nat. Rev. Drug Dis-
cov. 8:879–891.
5. Kumar V, Mahajan A, Chibale K. 2009. Synthetic medicinal chemistry of
E, Roepe PD. 2004. Novel, rapid, and inexpensive cell-based quantifica-
tion of antimalarial drug efficacy. Antimicrob. Agents Chemother. 48:
1807–1810.
selected antimalarial natural products. Antimicrob. Agents Chemother. 27. Casabianca LB, An D, Natarajan JK, Alumasa JN, Roepe PD, Wolf C, de
17:2236–2275.
Dios AC. 2008. Quinine and chloroquine differentially perturb heme
monomer-dimer equilibrium. Inorg. Chem. 47:6077–6081.
6. Alumasa JN, Gorka AP, Casabianca LB, Comstock E, de Dios AC,
Roepe PD. 2011. The hydroxyl functionality and a rigid proximal N are 28. Marques HM, Voster K, Egan TJ. 1996. The interaction of the heme-
required for forming a novel non-covalent quinine-heme complex. J. In-
org. Biochem. 105:467–475.
7. Egan TJ, Mavuso WW, Ross DC, Marques HM. 1997. Thermodynamic
octapeptide, N-acetylmicroperoxidase-8 with antimalarial drugs: solution
studies and modeling by molecular mechanics methods. J. Inorg.
Biochem. 64:7–23.
factors controlling the interaction of quinoline antimalarial drugs with 29. Ursos LM, DuBay KF, Roepe PD. 2001. Antimalarial drugs influence the
ferriprotoporphyrin IX. J. Inorg. Biochem. 68:137–145.
8. Egan TJ, Ncokazi KK. 2005. Quinoline antimalarials decrease the rate of
beta-hematin formation. J. Inorg. Biochem. 99:1532–1539.
9. Egan TJ, Ross DC, Adams PA. 1994. Quinoline anti-malarial drugs
inhibit spontaneous formation of beta-haematin (malaria pigment). FEBS
Lett. 352:54–57.
10. Leed A, DuBay K, Ursos LMB, Sears D, de Dios AC, Roepe PD. 2002.
Solution structures of antimalarial drug-heme complexes. Biochemistry
41:10245–10255.
pH dependent solubility of heme via apparent nucleation phenomena.
Mol. Biochem. Parasitol. 112:11–17.
30. Casabianca LB, de Dios AC. 2004. 13C NMR study of the self-association
of chloroquine, amodiaquine, and quinine. J. Phys. Chem. A 108:8505–
8513.
31. Evans DF. 1959. The determination of the paramagnetic susceptibility of
substances in solution by nuclear magnetic resonance. J. Chem. Soc., p
2003–2005.
32. Bennett TN, Kosar AD, Ursos LM, Dzekunov S, Singh Sidhu AB,
Fidock DA, Roepe PD. 2004. Drug resistance-associated pfCRT muta-
tions confer decreased Plasmodium falciparum digestive vacuolar pH.
Mol. Biochem. Parasitol. 133:99–114.
11. Cooper RA, Ferdig MT, Su XZ, Ursos LM, Mu J, Nomura T, Fujioka H,
Fidock DA, Roepe PD, Wellems TE. 2002. Alternative mutations at
position 76 of the vacuolar transmembrane protein PfCRT are associated
with chloroquine resistance and unique stereospecific quinine and quini- 33. Collier GS, Pratt JM, De Wet CR, Tshabalala CF. 1979. Studies on
dine responses in Plasmodium falciparum. Mol. Pharmacol. 61:35–42. haemin in dimethyl sulphoxide/water mixtures. Biochem. J. 179:281–289.
12. Griffin CE, Hoke JM, Samarakoon U, Duan J, Mu J, Ferdig MT, 34. Caner H, Biedermann PU, Agranat I. 2003. Conformational spaces of
Warhurst DC, Cooper RA. 2012. Mutation in the Plasmodium falciparum Cinchona alkaloids. Chirality 15:637–645.
Antimicrobial Agents and Chemotherapy