Organic Letters
Letter
(c) Greenberg, A.; Venanzi, C. A. J. Am. Chem. Soc. 1993, 115, 6951.
In summary, we have described the first general palladium-
catalyzed Suzuki−Miyaura cross-coupling of N-mesyl-activated
amides with arylboronic acids. Using a Pd/PCy3 catalyst system
andNa2CO3 asabase, highyieldsfortheselectiveN−C(O) metal
insertion/cross-coupling in the presence of various sensitive
functional groups have been achieved. The mesyl group features
highly desirable properties, including high atom economy, low
cost, high stability, and low toxicity. The present method
demonstrates the beneficial effect of the N-Ms substituent on
the chemoselectivity of amide cross-coupling. The origin of high
selectivity has been demonstrated through structural and
mechanistic studies. More importantly, we anticipate that using
N-mesylamides will enable other reactions by selective N−C
activation, in particular when high atom economy or low steric
hindrance is required.
(d)Tani, K.;Stoltz, B. M. Nature 2006, 441, 731. (e)Szostak, R.;Aube,
́
J.;
Szostak, M. Chem. Commun. 2015, 51, 6395.
(7) Blangetti, M.; Rosso, H.; Prandi, C.; Deagostino, A.; Venturello, P.
Molecules 2013, 18, 1188.
(8) (a) Muto, K.; Yamaguchi, J.; Musaev, D. G.; Itami, K. Nat. Commun.
2015,6,7508. (b)BenHalima, T.;Zhang, W.;Yalaoui, I.;Hong, X.;Yang,
Y. F.; Houk, K. N.; Newman, S. G. J. Am. Chem. Soc. 2017, 139, 1311.
(9) Prokopcova, H.; Kappe, C. O. Angew. Chem., Int. Ed. 2009, 48, 2276.
(10) (a) Hie, L.; Nathel, N. F. F.; Shah, T. K.; Baker, E. L.; Hong, X.;
Yang, Y. F.; Liu, P.; Houk, K. N.; Garg, N. K. Nature 2015, 524, 79.
(b) Weires, N. A.; Baker, E. L.; Garg, N. K. Nat. Chem. 2016, 8, 75.
(c) Simmons, B. J.; Weires, N. A.; Dander, J. E.; Garg, N. K. ACS Catal.
2016, 6, 3176. (d)Baker, E. L.;Yamano, M. M.;Zhou, Y.;Anthony, S. M.;
Garg, N. K. Nat. Commun. 2016, 7, 11554. (e) Dander, J. E.; Weires, N.
A.;Garg,N. K.Org.Lett. 2016,18,3934. (f)Hie, L.;Baker, E.L.;Anthony,
S. M.;Desrosiers, J. N.;Senanayake, C.;Garg, N. K. Angew. Chem., Int. Ed.
2016, 55, 15129. (g) Li, X.; Zou, G. Chem. Commun. 2015, 51, 5089.
(h) Meng, G.; Szostak, M. Org. Lett. 2015, 17, 4364. (i) Meng, G.;
Szostak, M. Org. Biomol. Chem. 2016, 14, 5690. (j) Shi, S.; Szostak, M.
Chem. - Eur. J. 2016, 22, 10420. (k) Meng, G.; Szostak, M. Angew. Chem.,
Int. Ed. 2015, 54, 14518. (l) Shi, S.; Meng, G.; Szostak, M. Angew. Chem.,
Int. Ed. 2016, 55, 6959. (m) Meng, G.; Szostak, M. Org. Lett. 2016, 18,
796. (n) Meng, G.; Shi, S.; Szostak, M. ACS Catal. 2016, 6, 7335. (o) Shi,
S.; Szostak, M. Org. Lett. 2016, 18, 5872. (p) Liu, C.; Meng, G.; Liu, Y.;
Liu, R.; Lalancette, R.; Szostak, R.; Szostak, M. Org. Lett. 2016, 18, 4194.
(q) Liu, C.; Meng, G.; Szostak, M. J. Org. Chem. 2016, 81, 12023. (r) Lei,
P.; Meng, G.; Szostak, M. ACS Catal. 2017, 7, 1960. (s) Hu, J.; Zhao, Y.;
Liu, J.; Zhang, Y.; Shi, Z. Angew. Chem., Int. Ed. 2016, 55, 8718. (t) Cui,
M.; Wu, H.; Jian, J.; Wang, H.; Liu, C.; Daniel, S.; Zeng, Z. Chem.
Commun. 2016, 52, 12076. (u) Wu, H.; Cui, M.; Jian, J.; Zeng, Z. Adv.
Synth. Catal. 2016, 358, 3876. (v) Wu, H.; Liu, T.; Cui, M.; Li, Y.; Jian, J.;
Wang, H.; Zeng, Z. Org. Biomol. Chem. 2017, 15, 536. (w) Dey, A.;
Sasmal, S.; Seth, K.; Lahiri, G. K.; Maiti, D. ACS Catal. 2017, 7, 433.
(x) Liu, L.; Chen, P.; Sun, Y.; Wu, Y.; Chen, S.; Zhu, J.; Zhao, Y. J. Org.
Chem. 2016, 81, 11686.
ASSOCIATED CONTENT
* Supporting Information
■
S
TheSupportingInformationisavailablefreeofchargeontheACS
Experimental procedures and characterization data (PDF)
X-ray crystallographic data for 1a (CIF)
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
(11) (a) N-Glutarimide amides introduced by our laboratory.10h (b)N-
Acyl-tert-butylcarbamates (Boc) and (c) N-Acyltosylamides (Ts)
introduced by Garg10a and Zou.10g Cross-coupling of N-saccharides
has been reported.10p N-Saccharides are cyclic imide alternatives to N-
glutarimides with a flat rotational profile around the N−C(O) bond.
(12) (a) So, S. M.; Kwong, F. Y. Chem. Soc. Rev. 2011, 40, 4963.
(b) Rosen, B. M.; Quasdorf, K. W.; Wilson, D. A.; Zhang, N.; Resmerita,
A. M.; Garg, N. K.; Percec, V. Chem. Rev. 2011, 111, 1346.
(13) Select examples: (a) So, C. M.; Zhou, Z.; Lau, C. P.; Kwong, F. Y.
Angew. Chem., Int. Ed. 2008, 47, 6402. (b)So, C. M.;Lau, C. P.;Kwong, F.
Y. Angew. Chem., Int. Ed. 2008, 47, 8059. (c) Fors, B. P.; Watson, D. A.;
Biscoe, M. R.; Buchwald, S. L. J. Am. Chem. Soc. 2008, 130, 13552.
(d) Zhang, L.; Qing, J.; Yang, P.; Wu, J. Org. Lett. 2008, 10, 4971. (e) So,
C. M.; Lee, H. W.; Lau, C. P.; Kwong, F. Y. Org. Lett. 2009, 11, 317.
(f) Dooleweerdt, K.;Fors, B. P.;Buchwald, S. L. Org. Lett. 2010, 12, 2350.
(g) Yeung, P. Y.; So, C. M.; Lau, C. P.; Kwong, F. Y. Angew. Chem., Int. Ed.
2010, 49, 8918. (h) Molander, G. A.; Shin, I. Org. Lett. 2012, 14, 3138.
(i) Song, B.; Knauber, T.; Gooßen, L. J. Angew. Chem., Int. Ed. 2013, 52,
2954. (j) Alsabeh, P. G.; Stradiotto, M. Angew. Chem., Int. Ed. 2013, 52,
7242. (k) Ferguson, D. M.; Rudolph, S. R.; Kalyani, D. ACS Catal. 2014,
4, 2395.
(14) Baker, S. C.; Kelly, D. P.; Murrell, J. C. Nature 1991, 350, 627.
(15) (a) Crabtree, R. H. The Organometallic Chemistry of the Transition
Metals; Wiley: New York, 2005. (b) Barrios-Landeros, F.; Carrow, B. P.;
Hartwig, J. F. J. Am. Chem. Soc. 2009, 131, 8141.
(16) Laughlin, R. G. J. Am. Chem. Soc. 1967, 89, 4268.
(17) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
(18) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41, 4176.
(19) Partyka, D. V. Chem. Rev. 2011, 111, 1529.
(20) Nahm, S.; Weinreb, S. M. Tetrahedron Lett. 1981, 22, 3815.
ACKNOWLEDGMENTS
■
Financial support was provided by Rutgers University. The
Bruker 500 MHz spectrometer used in this study was supported
by an NSF-MRI grant (CHE-1229030). We thank the Wrocław
Center for Networking and Supercomputing (grant number
WCSS159). Y.L. is thankful for a scholarship from the National
Natural Science Foundation of China (No. 21472616) and the
Priority Academic Program Development of Jiangsu Higher
Education−Yangzhou University
REFERENCES
■
(1) Reviews on N−C amide cross-coupling: (a) Meng, G.; Shi, S.;
Szostak, M. Synlett 2016, 27, 2530. (b) Liu, C.; Szostak, M. Chem. - Eur. J.
ACS Catal. 2017, 7, 1413.
(2) (a) Metal-Catalyzed Cross-Coupling Reactions and More; de Meijere,
A., Brase, S., Oestreich, M., Eds.; Wiley: New York, 2014. (b) Science of
̈
Synthesis: Cross-Coupling and Heck-Type Reactions; Molander, G. A.,
Wolfe, J. P., Larhed, M., Eds.; Thieme: Stuttgart, 2013.
(3) Johansson-Seechurn, C. C. C.; Kitching, M. O.; Colacot, T. J.;
Snieckus, V. Angew. Chem., Int. Ed. 2012, 51, 5062.
(4) Greenberg, A., Breneman, C. M., Liebman, J. F., Eds. The Amide
Linkage: Structural Significance in Chemistry, Biochemistry, and Materials
Science; Wiley: New York, 2000.
(5) (a) Gooßen, L. J.; Rodriguez, N.; Gooßen, K. Angew. Chem., Int. Ed.
2008, 47, 3100. (b) Brennfuhrer, A.; Neumann, H.; Beller, M. Angew.
̈
Chem., Int. Ed. 2009, 48, 4114.
(6) (a) Szostak, R.; Shi, S.; Meng, G.; Lalancette, R.; Szostak, M. J. Org.
Chem. 2016, 81, 8091. (b) Pace, V.; Holzer, W.; Meng, G.; Shi, S.;
Lalancette, R.; Szostak, R.; Szostak, M. Chem. - Eur. J. 2016, 22, 14494.
D
Org. Lett. XXXX, XXX, XXX−XXX