5386
K. Suenaga et al. / Tetrahedron Letters 45 (2004) 5383–5386
anti. On the other hand, the oxidation of 27 and 8 afforded
diastereomeric ketones 28 and 29, respectively, establish-
ing that the absolute configuration of C23 in 8 was S.
From these results, the stereochemistry of 8 was deter-
mined to be 23S and 24S (anti), as expected from the
results9 of Heathcook and co-workers.
donation of actin and their helpful advice and discus-
sions. This study was supported in part by the 21st
Century COE program and Grants-in-Aid for Scientific
Research from Ministry of Education, Culture, Sports,
Science, and Technology, Suntory Institute for Bioor-
ganic Research, Yamada Science Foundation, the Fu-
jisawa Foundation, the Naito Foundation, University of
Tsukuba Research Projects, and Wako Pure Chemical
Industries, Ltd.
O
O
O
OH OBn
O
O
OBn
23R
24S
23R
O
N
O
N
27
OH OBn
28
References and notes
O
O
O
O
OBn
O
23S
1. (a) Fenteany, G.; Shoutian, Z. Curr. Top. Med. Chem.
2003, 3, 593–616; (b) Yeung, K.-S.; Paterson, I. Angew.
Chem., Int. Ed. 2002, 41, 4632–4653.
O
N
O
N
2. (a) Yamada, K.; Ojika, M.; Ishigaki, T.; Yoshida, Y.;
Ekimoto, H.; Arakawa, M. J. Am. Chem. Soc. 1993, 115,
11020–11021; (b) Ojika, M.; Kigoshi, H.; Ishigaki, T.;
Yamada, K. Tetrahedron Lett. 1993, 34, 8501–8504; (c)
Ojika, M.; Kigoshi, H.; Ishigaki, T.; Nisiwaki, M.;
Tsukada, I.; Mizuta, K.; Yamada, K. Tetrahedron Lett.
1993, 34, 8505–8508; (d) Ojika, M.; Kigoshi, H.; Ishigaki,
T.; Tsukada, I.; Tsuboi, T.; Ogawa, T.; Yamada, K.
J. Am. Chem. Soc. 1994, 116, 7441–7442.
8
29
12. Dess, D. B.; Martin, J. J. Org. Chem. 1983, 48, 4155–
4156.
13. Nakagawa, I.; Hata, T. Tetrahedron Lett. 1975, 16, 1409–
1412.
14. (a) Paterson, I.; Tiller, R. D. Tetrahedron Lett. 1991, 32,
1749–1752; (b) Paterson, I.; Lister, M. A.; Ryan, G. R.
Tetrahedron Lett. 1992, 33, 4233–4236.
3. Saito, S.; Watabe, S.; Ozaki, H.; Kigoshi, H.; Yamada, K.;
Fusetani, N.; Karaki, H. J. Biochem. 1996, 120, 552–555.
4. (a) Kigoshi, H.; Ojika, M.; Ishigaki, T.; Suenaga, K.;
Mutou, T.; Sakakura, A.; Ogawa, T.; Yamada, K. J. Am.
Chem. Soc. 1994, 116, 7443–7444; (b) Kigoshi, H.;
Suenaga, K.; Mutou, T.; Ishigaki, T.; Atsumi, T.; Ishiw-
ata, H.; Sakakura, A.; Ogawa, T.; Ojika, M.; Yamada, K.
J. Org. Chem. 1996, 61, 5326–5351; (c) Suenaga, K.;
Kamei, N.; Okugawa, Y.; Takagi, M.; Akao, A.; Kigoshi,
K.; Yamada, K. Bioorg. Med. Chem. Lett. 1997, 7, 269–
274; (d) Kigoshi, H.; Suenaga, K.; Takagi, M.; Akao, A.;
Kanematsu, K.; Kamei, N.; Okugawa, Y.; Yamada, K.
Tetrahedron 2002, 58, 1075–1102.
5. (a) Fusetani, N.; Yasumuro, K.; Matsunaga, S.; Hashi-
moto, K. Tetrahedron Lett. 1989, 30, 2809–2812; (b)
Matsunaga, S.; Liu, P.; Celatka, C. A.; Panek, J. S.;
Fusetani, N. J. Am. Chem. Soc. 1999, 121, 5605–5606.
6. Hori, M.; Saito, S.; Shin, Y.; Ozaki, H.; Fusetani, N.;
Karaki, H. FEBS Lett. 1993, 322, 151–154.
15. A diastereomer of 16 was obtained as a minor product
(6%), the stereochemistry of which was not determined.
16. Evans, D. A.; Chapman, K. T.; Carreira, E. M. J. Am.
Chem. Soc. 1988, 110, 3560–3578.
17. The stereochemistry at C35 of acetals 19a and 19b was not
determined.
28
D
18. ½aꢀ +88.5 (c 0.067, CHCl3); IR (CHCl3) 3675, 1575, 1488,
1237, 1202, 1043 cmꢁ1
;
1H NMR (400 MHz, CDCl3): d
8.30 [8.08] (s, 1H), 6.49 [7.17] (d, J ¼ 14:0 Hz, 1H), 5.11
(m, 1H), 4.97 [4.99] (dd, J ¼ 9:6 Hz, 14.0 Hz, 1H), 4.80
(dd, J ¼ 2:8 Hz, 10.0 Hz, 1H), 3.93 (m, 1H), 3.79–3.29 (m,
5 H), 3.50 (s, 3H), 3.40 (s, 3H), 3.37 (s, 3H), 3.20 (m, 1H),
3.03 [3.07] (s, 3H), 2.51 (m, 1H), 2.09 [2.08] (s, 3H), 1.90–
1.72 (m, 2H), 1.76 (m, 1H), 1.69–1.36 (m, 6H), 1.02 [1.01]
(d, J ¼ 6:8 Hz, 3H), 0.98 (d, J ¼ 6:8 Hz, 3H), 0.89 (d,
J ¼ 6:8 Hz, 3H), 0.82 (d, J ¼ 6:8 Hz, 3H). The minor
counterparts of doubled signals in the ratio of 3:2 are in
brackets; HRMS (ESI) calcd for C28H51NNaO10
[(M+Na)þ] 584.3398, found 584.3411.
7. Saito, S.; Watabe, S.; Ozaki, H.; Fusetani, N.; Karaki, H.
J. Biol. Chem. 1994, 269, 29710–29714.
8. (a) Liu, P.; Panek, J. S. J. Am. Chem. Soc. 2000, 122,
1235–1236; (b) Panek, J. S.; Liu, P. J. Am. Chem. Soc.
2000, 122, 11090–11097.
9. (a) Walker, M. A.; Heathcock, C. H. J. Org. Chem. 1991,
56, 5747–5750; (b) Raimundo, B. C.; Heathcock, C. H.
Synlett 1995, 1213–1214.
10. Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc.
1981, 103, 2127–2129.
11. The stereochemistry of 8 was determined as follows. The
coupling constant between C23 and C24of 8 was 7.3 Hz,
whereas that of its syn-diastereomer 27, prepared by Evans
aldol reaction, was 3.6 Hz. This finding indicated that the
relative stereochemistry between C23 and C24in 8 was
19. The stereochemistry of 4 and 26 concerning the 2,3-di-O-
methylglyceroyl group was determined by degradation
and chiral HPLC analyses in the same manner as that used
for mycalolide B.5b
20. Actin was purified from rabbit skeletal muscle21 using G-
buffer containing 0.2 mM CaCl2, 0.2 mM ATP, 0.5 mM b-
mercaptoethanol, and 2 mM Tris–HCl (pH 8.0) and the
actin was polymerized to F-actin with 1 mM MgCl2 at
25 ꢁC for 1 h. The test compounds were dissolved in
DMSO and added to the F-actin solution (3.7 lM).
The incubated actin solutions were monitored with
a fluorometer (excitation at 365 nm and emission at
407 nm).
21. Spudich, J. A.; Watt, S. J. Biol. Chem. 1971, 246, 4866–
4871.