D. J. Hamilton, A. Sutherland / Tetrahedron Letters 45 (2004) 5739–5741
5741
5. Kim, Y.; Prestegard, J. H. Proteins 1990, 8, 377–385.
6. Wong, H. C.; Liu, G.; Zhang, Y.-M.; Rock, C. O.; Zheng,
J. J. Biol. Chem. 2002, 277, 15874–15880.
7. Reed, M. A. C.; Schweizer, M.; Szafranska, A. E.; Arthur,
C.; Nicholson, T. P.; Cox, R. J.; Crosby, J.; Crump, M. P.;
Simpson, T. J. Org. Biomol. Chem. 2003, 1, 463–471.
8. Young, D. W. Chem. Soc. Rev. 1994, 23, 119.
9. Kelly, N. M.; Sutherland, A.; Willis, C. L. Nat. Prod. Rep.
1997, 14, 205–219.
In conclusion, a simple and efficient, 12-step synthesis of
-arginine has been achieved giving the target molecule
L
in 24% overall yield. This route has been developed to
allow the selective incorporation of stable isotopes
during the later stages of the synthesis thereby maxi-
mising efficacy of the isotopic label. We have demon-
strated this, using the relatively inexpensive potassium
13C-cyanide for the preparation of 5-13C-
L-arginine.
Similarly, use of other stable isotopes of cyanide (e.g.,
KC15N or K13C15N) or isotopically labelled N,N-bis-
(tert-butoxycarbonyl)-1H-pyrazole-1-carboxamidine
(synthesised in two steps from commercially available
isotopically labelled cyanamide)16;18 would allow the
preparation of further analogues of labelled L-arginine
using this approach. Further studies towards the syn-
thesis of these compounds are currently in progress.
10. Martinkus, K. J.; Tann, C.-H.; Gould, S. J. Tetrahedron
1983, 39, 3493–3505; Prabhakaran, P. C.; Woo, N.-T.;
Yorgey, P.; Gould, S. J. Tetrahedron Lett. 1986, 27, 3815–
3818; Prabhakaran, P. C.; Woo, N.-T.; Yorgey, P.; Gould,
S. J. J. Am. Chem. Soc. 1988, 110, 5785–5791.
ꢀ
11. Padron, J. M.; Kokotos, G.; Martın, T.; Markidis, T.;
Gibbons, W. A.; Martın, V. S. Tetrahedron: Asymmetry
ꢀ
ꢀ
ꢀ
ꢀ
1998, 9, 3381–3394; Kokotos, G.; Padron, J. M.; Martın,
T.; Gibbons, W. A.; Martın, V. S. J. Org. Chem. 1998, 63,
ꢀ
3741–3744.
12. Sutherland, A.; Willis, C. L. J. Labelled Compd. Radio-
pharm. 1996, 38, 95–102.
Acknowledgements
13. Attempted hydrogenation of the di-Boc protected nitrile 9
at 60 psi and at 25 °C after 24 h returned only starting
material. However, under similar conditions the mono-
Boc analogues 11 and 14 were reduced in good yield.
14. Secrist, J. A., III; Logue, M. W. J. Org. Chem. 1972, 37,
335–336.
The authors gratefully acknowledge the University of
Glasgow and Lancaster Synthesis Ltd for financial
support.
15. Aurelio, L.; Brownlee, R. T. C.; Hughes, A. B. Org. Lett.
2002, 4, 3767–3769.
References and notes
16. Bernatowicz, M. S.; Wu, Y.; Matsueda, G. R. Tetrahedron
Lett. 1993, 34, 3389–3392.
1. Greenstein, J. P.; Winitz, M. In Chemistry of the Amino
Acids; R. E. Krieger Publishing Company: Florida, 1984;
Vol. 1, Chapter 3.
2. Findlow, S. C.; Winsor, C.; Simpson, T. J.; Crosby, J.;
Crump, M. P. Biochemistry 2003, 42, 8423–8433.
3. Crump, M. P.; Crosby, J.; Dempsey, C. E.; Parkinson, J.
A.; Murray, M.; Hopwood, D. A.; Simpson, T. J.
Biochemistry 1997, 36, 6000–6008.
17. Selected data for 5-13C-
L-arginine 17: IR (KBr) 3262,
3105, 2912, 1683, 1641, 1606, 1563, 1469, 1333 cmꢀ1; ½a
D
+12.4 (c 1.0, H2O); 1H NMR (400 MHz, D2O) d 1.49 (2H,
m), 1.68 (2H, m), 3.07 (2H, dt, J ¼ 139:6, 6.8 Hz), 3.49
(1H, t, J ¼ 6:0 Hz); 13C NMR (100 MHz, D2O) d 24.4 (d,
J ¼ 35:7 Hz), 29.1, 41.0, 55.0, 157.1, 174.5; MS (CI) m=z
176 (MHþ, 65%).
4. Xu, G.-Y.; Tam, A.; Lin, L.; Hixon, J.; Fritz, C. C.;
Powers, R. Structure 2001, 9, 277–287.
18. Bernatowicz, M. S.; Wu, Y.; Matsueda, G. R. J. Org.
Chem. 1992, 57, 2497–2502.