A. V. Ts6etko6 et al. / Tetrahedron Letters 43 (2002) 7267–7270
7269
Table 1.
No.
Solvent, additives
Base
T (°C)
Time of first
stage (h)
Yield of first
stage (%)
Time of second
stage (h)
Yield of second
stage (%)
1
2
3
4
THF/H2O–3/1
K2CO3
K2CO3
K2CO3
K2CO3
64
100
69
15
0.5
15
2
100
100
100
100
48
4
48
14
69
97
50
83
Dioxane/H2O–3/1
Benzene/H2O–3/1
MeCN/H2O–3/1
76
5
6
7
8
Dioxane/H2O–3/1
Dioxane/H2O–3/1
Dioxane/H2O–3/1
Dioxane/H2O–3/1
K2CO3
K3PO4
CsF
100
100
100
100
0.5
0.25
7
100
100
100
100
4
4
12
4
97
97
97
88
Ba(OH)2
0.25
9
10
Dioxane/H2O–3/1
Dioxane/H2O–3/1
K2CO3
K2CO3
64
20
5
48
100
44
48
48
0
0
11
12
13
Dioxane
K2CO3
K2CO3
K2CO3
100
100
100
4
15
0.5
100
100
100
48
48
4
7
37
93
Dioxane+0.5 equiv. Bu4NBr
Dioxane/H2O–3/1+0.5 equiv.
Bu4NBr
Ar'
N
Cl
N
Ar
I
Ar'B(OH)
2)
ArB(OH)
1)
2
2
Pd(PPh3)4 2 mol % dioxane - H2O - 3 : 1
100 0C (reflux)
K2CO3
Cl
N
O
Cl
Cl
4
5
6
3
N
N
N
0.5
2.5
89 (87)
first step time, h
3
0.5
4
97 (96)
0.5
4
97 (96)
second step time, h
yield of product, %
(isolated)
100 (99)
Scheme 4.
4. Typical experiment: 4-Chloro-6-iodoquinoline (50 mg,
0.172 mmol), 0.172 mmol of first the boronic acid, 144 mg
of K2CO3 (1.032 mmol), 1.5 ml of dioxane and 0.5 ml of
water were refluxed under argon with 3.4 mmol (2 mol%)
of catalyst. The reaction was monitored by TLC. After the
reaction was finished, the second boronic acid (0.224
mmol, 1.3 equiv.) was added to the reaction mixture. After
the second reaction was finished the reaction mixture was
diluted with ether, filtered through silica gel, evaporated in
vacuo, and purified by column chromatography using
silica gel (ether–hexane 1:1).
References
1. (a) Liu, Y.; Gribble, W. Tetrahedron Lett. 2000, 41, 8717;
(b) Saiga, A.; Hossain, K. M.; Takagi, K. Tetrahedron
Lett. 2000, 41, 4629; (c) Ford, E.; Brewster, A.; Jones, G.;
Bailey, J.; Summer, N. Tetrahedron Lett. 2000, 41, 3197;
(d) Kamikawa, T.; Hayashi, T. Tetrahedron Lett. 1997, 38,
7087; (e) Gundersen, L.-L.; Langli, G.; Rise, F. Tetra-
hedron Lett. 1995, 36, 1945; (f) Shiota, T.; Yamamori, T.
J. Org. Chem. 1999, 64, 453; (g) Ford, A.; Sinn, E.;
Woodward, S. J. Chem. Soc., Perkin Trans. 1 1997, 927;
(h) Bach, T.; Kruger, L. Eur. J. Org. Chem. 1999, 2045.
2. Ellis, J.; Gellert, E. Aust. J. Chem. 1973, 26, 907.
3. (a) Chuhan, P. M. S.; Sharma, S.; Bhakuni, D. S. Indian J.
Chem. Sect. B 1986, 25, 827; (b) Abuzar, S.; Dubey, R.;
Sharma, S. Eur. J. Med. Chem. Chim. Ther. 1986, 21, 5; (c)
Gershon, H.; Clarke, D. D.; Gershon, M. Monatsh. Chem.
1994, 125, 51; (d) Hino, K.; Kawashima, K.; Oka, M.;
Nagai, Y.; Uno, H.; Matsumoto, J. Chem. Pharm. Bull.
1989, 37, 110; (e) Boschelli, D.; Whang, Y.; Ye, F.; Wu,
B.; Zhang, N.; Dutia, M.; Powell, D.; Wissner, A.; Arndt,
K.; Webber, J.; Boschelli, F. J. Med. Chem. 2001, 44, 822.
5. 1H NMR data (CDCl3, 400 MHz) of coupling products.
Compound 2: l 3.86 (s, 3H), 7.02 (m, 2H), 7.47 (d, J
(H,H)=4.7 Hz, 1H), 7.66 (m, 2H), 7.98 (dd, J (H,H)=8.8
Hz, J (H,H)=2.1 Hz, 1H), 8.15 (d, J (H,H)=8.8 Hz, 1H),
8.33 (d, J (H,H)=2.1 Hz, 1H), 8.73 (d, J (H,H)=4.7 Hz,
1H). Compound 3: l 2.44 (s, 3H), 3.81 (s, 3H), 6.95 (m,
2H), 7.31 (m, 3H), 7.42 (m, 2H), 7.52 (m, 2H), 7.92 (dd, J
(H,H)=8.8 Hz, J (H,H)=2.1 Hz, 1H), 8.06 (d, J (H,H)=
2.1 Hz, 1H), 8.20 (d, J (H,H)=8.8 Hz, 1H), 8.87 (d, J
(H,H)=4.7 Hz, 1H). Compound 4: l 2.35 (s, 3H), 2.43 (s,
3H), 7.21 (m, 2H), 7.29 (m, 3H), 7.42 (m, 2H), 7.47 (m,