5996
A. L. Shaikh et al. / Tetrahedron Letters 47 (2006) 5993–5996
Deshmukh, A. R. A. S.; Puranik, V. G.; Bhawal, B. M.
direct methods using SHELXTL. Least squares refinement
of scale, positional and anisotropic thermal parameters for
Tetrahedron: Asymmetry 1996, 7, 2733–2738; (c) Bhawal,
B. M.; Joshi, S. N.; Krishnaswamy, D.; Deshmukh, A. R.
A. S. J. Indian Inst. Sci. 2001, 81, 265–276; (d) Arun, M.;
Joshi, S. N.; Puranik, V. G.; Bhawal, B. M.; Deshmukh,
A. R. A. S. Tetrahedron 2003, 59, 2309–2316; (e) Jayanthi,
A.; Puranik, V. G.; Deshmukh, A. R. A. S. Synlett 2004,
1249–1253; (f) Jayanthi, A.; Thiagrajan, K.; Puranik, V.
G.; Bhawal, B. M.; Deshmukh, A. R. A. S. Synthesis 2004,
18, 2965–2974; (g) Shaikh, A. L.; Puranik, V. G.;
Deshmukh, A. R. A. S. Tetrahedron 2005, 61, 2441–2451.
non hydrogen atoms converged to R = 0.0654. Rw
=
0.1112 for 3476 unique observed reflections. Hydrogen
atoms were geometrically fixed. The refinements were
carried out using SHELXTL-97. Largest diff. peak and hole
0.148 and À0.113eÆAÀ3. Crystallographic data (excluding
˚
structure factors) for the structure 6a in this letter have
been deposited with the Cambridge Crystallographic Data
Centre as supplementary publication number CCDC
606327.
7. (a) Deshmukh, A. R. A. S.; Bhawal, B. M.; Krishnas-
wamy, D.; Govande, V. V.; Shinkre, B. A.; Jayanthi, A.
Curr. Med. Chem. 2004, 11, 1889–1920, and references
cited therein; (b) Shirode, N. M.; Kulkarni, K. C.;
Gumaste, V. K.; Deshmukh, A. R. A. S. ARKIVOC,
2005; (i), 53–64; (c) Kale, A. S.; Deshmukh, A. R. A. S.
Synlett 2005, 2370–2372; (d) Tiwari, D. K.; Gumaste, V.
K.; Deshmukh, A. R. A. S. Synthesis 2006, 115–122.
8. (a) Banik, B. K.; Manhas, M. S.; Newaz, S. N.; Bose, A.
K. Bioorg. Med. Chem. Lett. 1993, 3, 2363–2368; (b)
Palomo, C. In Recent Progress in the Chemical Synthesis of
Antibiotics; Lukacs, G., Ohno, M., Eds.; Springer-Verlag:
Berlin, 1990; p 565.
9. (a) Buynak, J. D.; Rao, M. N.; Pajouhesh, H.; Chandra-
sekaran, R. Y.; Finn, K.; deMeester, P.; Chu, S. C. J. Org.
Chem 1985, 55, 4245; (b) Buynak, J. D.; Mathew, J.;
Narayana Rao, M.; Haley, E.; George, C.; Siriwardane,
U. J. Chem. Soc., Chem. Commun. 1987, 735–737.
10. (a) Fetter, J.; Lempert, K.; Gigur, T.; Nyitrai, J.; Kajtar-
Peredy, M.; Simig, G.; Hornyak, G.; Doleschall, G.
J. Chem. Soc., Perkin Trans. 1 1986, 221–227; (b) Fetter,
J.; Lempert, K.; Kajtar-Peredy, M.; Simig, G.; Hornyak,
G. J. Chem. Soc., Perkin Trans. 1 1986, 1453–1458.
11. Georg, G. I.; Ravikumar, V. T. In The Organic Chemistry
of b-Lactams; VCH: New York, 1993; p 295, and
references cited therein.
12. Manhas, M. S.; Banik, B. K.; Mathur, A.; Vincent, J. E.;
Bose, A. K. Tetrahedron 2000, 56, 5587–5601, and
references cited therein.
13. (a) Bose, A. K.; Spiegelman, G.; Manhas, M. S. Tetra-
hedron Lett. 1971, 34, 3167–3170; (b) Zamboni, R.;
Just, G. Can. J. Chem. 1979, 57, 1945–1948; (c) Bose,
A. K.; Krishnan, L.; Wagle, D. R.; Manhas, M. S.
Tetrahedron Lett. 1986, 27, 5955–5958.
14. Manhas, M. S.; Ghosh, M.; Bose, A. K. J. Org. Chem.
1990, 55, 575–580.
15. Bose, A. K.; Chiang, Y. H.; Manhas, M. S. Tetrahedron
Lett. 1972, 13, 4091–4094.
17. A typical procedure for the synthesis of trans-3-vinyl-b-
lactams 6a and 7a: A solution of 4-phenoxybut-2-enoyl
chloride (4a) (0.280 g, 1.42 mmol) in dry dichloromethane
(20 mL) was added slowly to a mixture of imine 5a
(0.200 g, 0.94 mmol) and triethylamine (0.430 g, 4.26
mmol) in dry dichloromethane (20 mL) at 0 ꢁC. After
addition was complete, the reaction mixture was refluxed
with stirring for 15 h. The reaction mixture was washed
with water (2 · 10 mL), saturated sodium bicarbonate
solution (10 mL) and saturated brine solution (10 mL).
The organic layer was then dried over anhydrous Na2SO4,
and the solvent was removed under reduced pressure to
give a thick brown oil (0.280 g, 80%). 1H NMR of the
crude product showed it to be a mixture of trans-b-lactams
6a and 7a (Z and E isomers 90:10), which were separated
by flash column chromatography (petroleum ether-ethyl
acetate 8:2).
trans-1-(4-Methoxyphenyl)-3-(Z-2-phenoxyvinyl)-4-phenyl-
azetidin-2-one (6a): White needles (MeOH), 0.238 g, 68%;
mp 128–129 ꢁC; IR (CHCl3): 3018, 1741, 1664, 1595, 1512,
1245, 1217 cmÀ1; 1H NMR (200 MHz, CDCl3) d 3.75 (3H,
s, Ph-OCH3), 4.13–4.19 (1H, m, C3H), 4.87 (1H, d,
J = 2.5 Hz, C4H), 5.10 (1H, dd, J = 6.0 Hz, J = 8.0 Hz,
CH@CHOPh), 6.67 (1H, dd, J = 6.0 Hz, J = 1.3 Hz,
CH@CHOPh), 6.77–7.38 (14H, m, Ar–H); 13C NMR
(50 MHz, CDCl3) d 55.4, 55.6, 62.3, 103.9, 114.3, 116.5,
118.3, 123.2, 126.0, 128.4, 128.9, 129.6, 131.4, 137.8, 144.3,
155.9, 156.8, 165.6; MS (m/z): 372 (M+1); Anal. Calcd for
C24H21NO3: C, 77.60; H, 5.69; N, 3.77. Found: C, 77.54;
H, 5.62; N, 3.70%.
trans-1-(4-Methoxyphenyl)-3-(E-2-phenoxyvinyl)-4-phenyl-
azetidin-2-one (7a): Thick oil, 0.042 g, 12%; IR (CHCl3):
3016, 2360, 1743, 1658, 1512, 1240 cmÀ1 1H NMR
;
(200 MHz, CDCl3) d 3.75 (3H, s, Ph-OCH3), 3.68–3.80
(1H, m, C3H), 4.72 (1H, d, J = 2.5 Hz, C4H), 5.53 (1H,
dd, J = 9.3 Hz, J = 12.0 Hz, CH@CHOPh), 6.71–7.38
(15H, m, Ar–H and CH@CHOPh); 13C NMR (75 MHz,
CDCl3) d 55.5, 59.4, 62.7, 104.8, 114.4, 117.1, 118.5, 123.4,
125.9, 128.6, 129.2, 129.7, 137.5, 146.4, 156.2, 156.7, 163.1;
MS (m/z): 372 (M+1); Anal. Calcd for C24H21NO3: C,
77.60; H, 5.69; N, 3.77. Found: C, 77.51; H, 5.60; N, 3.69%.
18. (a) Cossio, F. P.; Ugalde, J. M.; Lopez, X.; Lecea, B.;
Palomo, C. J. Am. Chem. Soc. 1993, 115, 995–1004; (b)
Hegedus, L. S.; Montgomery, J.; Narukawa, Y.; Snustad,
D. C. J. Am. Chem. Soc. 1991, 113, 5784–5791.
16. X-ray data for 6a: X-ray structure determination of
C24H21NO3: Colorless needles 0.39 · 0.05 · 0.02 mm
grown from methanol. M = 371.42, Monoclinic, P21/n,
˚
˚
˚
a = 11.3472(2) A, b = 5.9741(8) A, c = 29.163(4) A, b =
3
À3
,
˚
91.397 (2)ꢁ, V = 1976.3(5) A , Z = 4, D = 1.248 mg/cm
l = 0.082 mmÀ1, F(000) = 784, T = 293 K. Data were
collected on a SMART APEX CCD Single Crystal X-ray
˚
diffractometer using Mo-Ka radiation (k = 0.7107 A) to a
19. Jiao, L.; Liang, Y.; Xu, J. J. Am. Chem. Soc. 2006, 128,
6060–6069.
maximum h range of 25.00ꢁ. The structure was solved by