4.98 (d, J = 13.6 Hz, 2H), 5.88–6.00 (m, 1H), 6.97 (d, J = 6.4 Hz,
1H), 7.03 (d, J = 5.6 Hz, 1H), 7.32–7.40 (m, 2H), 7.43 (d, J =
4.8 Hz, 1H), 7.45 (d, J = 4.8 Hz, 1H), 7.52–7.59 (m, 2H), 7.89–7.96
(m, 2H), 7.99 (dd, J = 9.0, 2.0 Hz, 2H), 8.30–8.38 (m, 2H), 8.65
(t, J = 4.0 Hz, 2H). 13C NMR (100 MHz, CDCl3): 11.99, 23.36,
23.60, 25.36, 26.34, 26.55, 27.36, 27.80, 37.46 39.71, 49.49, 49.85,
49.96, 50.87, 55.58, 55.61, 60.07, 60.22, 76.05, 76.28, 101.83,
101.93, 114.47, 118.11, 118.37, 121.59, 121.67, 122.22, 122.24,
122.60, 122.85, 127.06, 127.09, 127.16, 127.18, 131.33, 131.90,
131.97, 140.11, 144.43, 144.69, 144.75, 147.14, 156.06, 156.12,
156.18, 157.26, 157.33. HRMS-FAB+ [M + H]+: found 777.4141;
calc. (C48H53N6O4) 777.4128. UV-vis (CHCl3) max: 281, 334 nm.
Acknowledgements
We would like to thank Ms Denise Scofield, Dr KenWoycechowsky,
Prof. Franco Cozzi and Prof.Amir H. Hoveyda for their helpful sug-
gestions. This work was financially supported by US-NSF, (Grant
CHE-0213323) AFSOR, and Swiss SNF.
References
1 S. G. Hentges and K. B. Sharpless, J. Am. Chem. Soc., 1980, 102,
4263–4265.
2 E. N. Jacobsen, I. Marko, W. S. Mungall, G. Schroeder and K. B.
Sharpless, J. Am. Chem. Soc., 1988, 110, 1968–1970.
3 K. B. Sharpless, W. Amberg, Y. L. Bennani, G. A. Crispino, J. Hartung,
K. S. Jeong, H. L. Kwong, K. Morikawa, Z. M. Wang, D. Xu and X.-L.
Zhang, J. Org. Chem., 1992, 57, 2768–2771.
Poly(methylDHQD2PHAL siloxane) (18). Refer to general
hydrosilation procedure. The reaction was run using 17 (2.75 g,
3.5 mmol),PMHS(170L,2.9mmol),toluene(20mL)anddichloro-
di(cyclopentadienyl)platinum(II) (1 mg, 0.0025 mmol). The purifi-
cation was difficult and required special conditions to separate the
polymer product from 17. After the initial precipitation subsequent
precipitations were done by dissolving the crude material in toluene
(5 mL) and dripping a drop at a time into hexanes (10 mL). A total
of six precipitations from toluene to hexanes were needed for clean
material. The residual solvents were removed from the polymer
residue under reduced pressure to provide a tan solid (520 mg,
22%), equiv. wt. 837. 1H NMR (500 MHz, CDCl3): −0.10–0.20 (br
s, 3H), 0.35–0.60 (br s, 2H), 0.72–0.84 (br s, 3H), 1.24–1.58 (br m,
10H), 1.62–1.72 (br s, 2H), 1.90–2.02 (br s, 2H), 2.50–2.86 (br m,
6H), 3.28–3.58 (br s, 8H), 3.76–3.96 (br s, 6H), 6.86–7.04 (br s, 2H),
7.30–7.46 (br m, 4H), 7.48–7.60 (br s, 2H), 7.84–8.06 (br s, 4H),
8.24–8.40 (br s, 2H), 8.54–8.70 (br s, 2H). 13C NMR (125 MHz,
CDCl3): −1.00, 11.79, 14.56, 22.91, 23.32, 24.84, 25.21, 26.24,
26.43, 27.22, 27.71, 37.38, 39.63, 49.65, 49.94, 50.05, 50.84, 55.55,
55.69, 60.04, 60.25, 76.02, 76.32, 101.73, 102.04, 118.19, 118.56,
121.60, 121.81, 122.22, 122.43, 122.73, 122.88, 126.89, 127.01,
127.22, 127.32, 132.17, 132.30, 140.37, 144.70, 144.87, 144.94,
147.35, 156.29, 156.39, 156.49, 157.61, 157.73. IR (neat): Si–O
1050, C–H 2930 cm−1. UV-vis (CHCl3) max: 281, 336 nm.
4 H. C. Kolb, M. S. VanNieuwenhze and K. B. Sharpless, Chem. Rev.,
1994, 94, 2483–2547.
5 (a) B. M. Kim and K. B. Sharpless, Tetrahedron Lett., 1990, 31, 3003–
3006; (b) I. Motorina and C. M. Credden, Org. Lett., 2001, 3, 2325.
6 H. Han and K. D. Janda, J. Am. Chem. Soc., 1996, 118, 7632–7633.
7 P. Salvadori, D. Pini, A. Petri and A. Mandoli, Catalytic Heterogeneous
Enantioselective Dihydroxylation and Epoxidation, Wiley-VCH Verlag,
Weinheim, Germany, 2000.
8 T. Frenzel, W. Solodenko and A. Kirschning, Polymeric Materials in
Organic Synthesis and Catalysis, Wiley-VCH: Weinheim, 2003.
9 N. E. Leadbeater and M. Marco, Chem. Rev., 2002, 102, 3217–3273.
10 M. Benaglia, A. Puglisi and F. Cozzi, Chem. Rev., 2003, 103, 3401–
3429.
11 C. Bolm and A. Gerlach, Eur. J. Org. Chem., 1998, 21–27.
12 C. Bolm and A. Gerlach, Angew. Chem., Int. Ed. Engl., 1997, 36,
741–743.
13 H. Han and K. D. Janda, Tetrahedron Lett., 1997, 38, 1527–1530.
14 D. J. Gravert and K. D. Janda, Chem. Rev., 1997, 97, 489–509.
15 P. H. Toy and K. D. Janda, Acc. Chem. Res., 2000, 33, 546–554.
16 T. J. Dickerson, N. N. Reed, K. D. Janda, Polymeric Materials in Or-
ganic Synthesis and Catalysis, Wiley-VCH, Weinheim, 2003.
17 B. B. Lohray, E. Nandanan and V. Bhushan, Tetrahedron Lett., 1994, 35,
6559–6562.
18 A. Petri, D. Pini and P. Salvadori, Tetrahedron Lett., 1995, 36, 1549–
1552.
19 F. Sieber, P. Wentworth Jr. and K. D. Janda, J. Comb. Chem., 1999, 1,
540–546.
20 F. Sieber, P. Wentworth Jr., J. D. Toker, A. D. Wentworth, W. A. Metz,
N. N. Reed and K. D. Janda, J. Org. Chem., 1999, 64, 5188–5192.
21 T. S. Reger and K. D. Janda, J. Am. Chem. Soc., 2000, 122, 6929–6934.
Poly(methylDHQD2PHAL siloxane-co-methylacetic acid
2-propoxyethyl ester siloxane) (19). Refer to general hydrosila-
tion procedure. The reaction was run using 17 (1.2 g, 1.5 mmol), 3
(165 mg, 1.15 mmol), PMHS (130 L, 2.2 mmol), toluene (15 mL)
and dichlorodi(cyclopentadienyl)platinum(II) (1 mg, 0.005 mmol).
The purification was difficult and required special conditions to
separate the polymer product from 17. After the initial precipitation
subsequent precipitations were done by dissolving the crude mate-
rial in toluene (5 mL) and dripping a drop at a time into hexanes
(10 mL). A total of six precipitations from toluene to hexanes were
needed for clean material. The residual solvents were removed
from the polymer residue under reduced pressure to provide a tan
solid (250 mg, 22%). This procedure gave a material with a ratio
of 5:7 for the cinchona alkaloid to the soluble linker, respectively.
The ratio was determined by comparing the integration of a unique
1H NMR signal from the cinchona alkaloid ( 8.6, 2H) to a unique
signal from the soluble linker ( 4.2, 2H). The 1H NMR integration
data is reported relative to five cinchona units, equiv. wt. 1123. 1H
NMR (500 MHz, CDCl3): −0.07–0.26 (br s, 36H), 0.37–0.61 (br
s, 24H), 0.71–0.82 (br s, 15H), 1.30–1.81 (br m, 74H), 1.88–2.12
(br m, 31H), 2.55–2.84 (br m, 30H), 3.27–3.52 (br m, 54H),
3.54–3.65 (br s, 14H), 3.78–3.95 (br m, 30H), 4.07–4.23 (br s,
14H), 6.84–7.05 (br s, 10H), 7.26–7.44 (br m, 20H), 7.46–7.61 (br
s, 10H), 7.82–8.07 (br m, 20H), 8.23–8.42 (br s, 10H), 8.53–8.70 (br
s, 10H). 13C NMR (125 MHz, CDCl3): −1.19, −0.94, 11.76, 12.85,
14.53, 20.78, 22.61, 22.74, 23.20, 24.76, 25.18, 26.21, 26.35, 27.16,
27.63, 37.33, 39.62, 49.63, 49.90, 50.01, 50.80, 55.33, 55.54, 59.98,
60.19, 63.56, 68.37, 73.69, 76.25, 76.36, 101.89, 101.97, 118.32,
118.53, 121.82, 121.97, 122.17, 122.42, 122.71, 122.86, 126.98,
127.11, 127.19, 127.28, 132.16, 132.30, 140.35, 144.56, 144.69,
144.90, 147.31, 156.26, 156.38, 156.44, 157.42, 157.65, 170.96. IR
22 M. S. Bratcher,
M. S. DeClue, A. Grunnet-Jepsen,
D. Wright,
B. R. Smith, W. E. Moerner and J. S. Siegel, J. Am. Chem. Soc., 1998,
120, 9680–9681.
23 D. Wright, U. Gubler, W. E. Moerner, M. S. DeClue and J. S. Siegel, J.
Phys. Chem. B, 2003, 107, 4732–4737.
24 Commercial poly(methylhydrosiloxane) available through Aldrich with
Mn = 9500.
25 R. N. Meals, Pure Appl. Chem., 1966, 13, 141–157.
26 P. Strohriegl, Makromol. Chem., Rapid Commun., 1986, 7, 771–775.
27 M. Lux, P. Strohriegl and H. Höcker, Makromol. Chem., 1987, 188,
811–820.
28 S. J. Clarson and J. A. Semlyen, Siloxane Polymers, PTR Prentice Hall,
NJ, 1993.
29 G. Nestor, M. S. White, G. W. Gray, D. Lacey and K. J. Toyne, Makro-
mol. Chem., 1987, 188, 2759–2767.
30 The rough equality of optical purity and ee was confirmed by Mosher’s
analysis.
31 Y. Ogino, H. Chen, E. Manoury, T. Shibata, M. Beller, D. Lubben and
K. B. Sharpless, Tetrahedron Lett., 1991, 32, 5761–5764.
32 W. Amberg, Y. L. Bennani, R. K. Chadha, G. A. Crispino, W. D. Davis,
J. Hartung, K. S. Jeong, Y. Ogino, T. Shibata and K. B. Sharpless, J.
Org. Chem., 1993, 58, 844–849.
33 M. S. DeClue, PhD Thesis, University of Califorina – San Diego, CA,
2003.
34 H. C. Kolb, P. G. Andersson,Y. L. Bennani, G. A. Crispino, K. S. Jeong,
H. L. Kwong and K. B. Sharpless, J. Am. Chem. Soc., 1993, 115, 12226–
12227.
35 V. Van Rheenen, R. C. Kelly and D. Y. Cha, Tetrahedron Lett., 1976,
1973–1976.
36 M. Minato, K. Yamamoto and J. Tsuji, J. Org. Chem., 1990, 55,
766–768.
37 P.-O. Norrby, H. Becker and K. B. Sharpless, J. Am. Chem. Soc., 1996,
118, 35–42.
38 D. R. Boyd,
N. D. Sharma,
N. I. Bowers,
P. A. Goodrich,
(neat): Si–O 1050, CO 1740, C–H 2940 cm−1. UV-vis (CHCl3) max
:
M. R. Groocock, A. J. Blacker, D. A. Clarke, T. Howard and H. Dalton,
Tetrahedron: Asymmetry, 1996, 7, 1559–1562.
281, 336 nm.
O r g . B i o m o l . C h e m . , 2 0 0 4 , 2 , 2 2 8 7 – 2 2 9 8
2 2 9 7