S.-G. Kim et al. / Tetrahedron Letters 45 (2004) 6835–6838
6837
(h) Bedekar, A. V.; Koroleva, E. B.; Andersson, P. G. J.
Org. Chem. 1997, 62, 2158–2526; (i) Pirrung, M. C.;
Tumey, L. N. J. Comb. Chem. 2000, 2, 675–680; (j) Wuts,
P. G. M.; Northuis, J. M.; Kwan, T. A. J. Org. Chem.
2000, 65, 9223–9225; (k) Rajaram, S.; Sigman, M. S. Org.
Lett. 2002, 4, 3399–3401.
are stronger binders toward ammonium ion. A signifi-
cant chiral discrimination was observed in the cases of
C1-BTOs 3e–g, whereaslittle enantioeslection wasob-
served in the cases of other receptors. For example, with
C1-BTO 3f 100% extraction and an enantioselection of
59(S):41(R) were obtained, and with 3g 80% extraction
and an enantioselection of 58(S):42(R) were obtained.
Thus, only those C1-BTOs that have phenyl-substituted
oxazolines show substantial enantioselection, which im-
plies that the oxazoline substituent plays an important
role in the chiral discrimination. Also, the enantioselec-
tivity observed with the C1-BTOsare lower than that
observed with the C3-symmetric PhBTO.5c These results
raise questions on the enantioselection mechanism with
the C1-BTOsin comparison with the C3-PhBTO.
4. For recent reviews, see: (a) Ghosh, A. K.; Mathivanan, P.;
Cappiello, J. Tetrahedron: Asymmetry 1998, 9, 1–45; (b)
Jørgense, K. A.; Johannsen, M.; Yao, S.; Audrain, H.;
Thurhauge, J. Acc. Chem. Res. 1999, 32, 605–613; (c)
Evans, D. A.; Rovis, T.; Johnson, J. S. Pure Appl. Chem.
1999, 71, 1407–1415; (d) Thorhauge, J.; Roberson, M.;
Hazell, R. G.; Jørgensen, K. A. Chem. Eur. J. 2002, 8,
1888–1898.
5. Generally, the formation of tris(oxazolines) are preferred
over mono- and bis(oxazolines) under the conditions,
which makes a stepwise introduction of oxazoline rings
not feasible for the synthesis of C1-symmetric tripodal
oxazolines. For our contributions to molecular recogni-
tion area with C3-symmetric tripodal oxazolines, see: (a)
Ahn, K. H.; Kim, S.-G.; Jung, J.; Kim, K.-H.; Kim, J.;
Chin, J.; Kim, K. Chem. Lett. 2000, 170–171; (b) Kim,
S.-G.; Ahn, K. H. Chem. Eur. J. 2000, 6, 3399–3403; (c)
Kim, S.-G.; Kim, K.-H.; Jung, J.; Shin, S. K.; Ahn, K. H.
J. Am. Chem. Soc. 2002, 124, 591–596; (d) Ahn, K. H.;
Ku, H.-y.; Kim, Y.; Kim, S.-G.; Kim, Y. K.; Son, H. S.;
Ku, J. K. Org. Lett. 2003, 5, 1419–1422; (e) Kim, S.-G.;
Kim, K.-H.; Kim, Y. K.; Shin, S. K.; Ahn, K. H. J. Am.
Chem. Soc. 2003, 125, 13819–13824.
In conclusion, we have synthesized various chiral tripo-
dal oxazolinesthat have C1-symmetry. The synthesis
involved a novel zinc chloride-promoted oxazoline
exchange reaction with added amino alcohols. A prelim-
inary study showed that some of the C1-BTOsalso have
chiral discrimination ability toward an a-phenylethyl-
ammonium ion. A further study on the chiral discrimi-
nation mechanism and catalytic asymmetric reactions
with the C1-BTOsare under invetsigation and will be
reported elsewhere.
6. Kim, S.-G.; Ahn, K. H. Tetrahedron Lett. 2001, 42,
4175–4177.
Acknowledgements
7. Recently a modular approach to C1- and C3-symmetric
chiral tripodal oxazoline ligands for asymmetric catalysis
wasreported: Bellemin-Laponnaz, S.; Gade, L. H. Angew.
Chem., Int. Ed. 2002, 41, 3473–3475.
Thiswork wasfinancially supported by the Center for
Integrated Molecular Systems sponsored by the Korea
Science and Engineering Foundation.
8. A typical exchange reaction procedure and characteriza-
tion data of the oxazolines: a mixture of dry ZnCl2
(491mg, 3.6mmol), tris(oxazoline) 2b (1.36g, 3.0mmol),
and L-valinol (464mg, 4.5mmol) in chlorobenzene (30mL)
wasstirred under reflux for 42h. The reaction mixture was
cooled to room temperature, and the solvent was removed
under reduced pressure. The residue was dissolved in
dichloromethane, and it was washed with saturated
aqueousammonium chloride oslution, then with brine.
The organic layer wasdried over anhydrousmagneisum
sulfate and concentrated in vacuo. The residue was
purified by silica gel chromatography (EtOAc, then 3%
MeOH/ethyl acetate) to afford tris(oxazoline) 3c (460mg,
32%) as a solid, together with the starting material 2b
(254mg, 18%). Compound 1a: Rf = 0.59 (1:9 MeOH/
References and notes
1. For reviewsof chiral oxazoline ligandsin aysmmetric
catalysis, see: (a) Gant, T. G.; Meyers, A. I. Tetrahedron
1994, 50, 2297–2360; (b) Ghosh, A. K.; Mathivanan, P.;
Cappiello, J. Tetrahedron: Asymmetry 1998, 9, 1–45; (c)
Gomez, M.; Muller, G.; Rocamora, M. Coordin. Chem.
Rev. 1999, 193–195, 769–835; (d) Pfaltz, A. Synlett 1999,
835–842; (e) Johnson, J. S.; Evans, D. A. Acc. Chem. Res.
2000, 33, 325–335; (f) Fache, F.; Schulz, E.; Lorraine
Tommasino, M.; Lemaire, M. Chem. Rev. 2000, 100,
2159–2232.
2. (a) Abbenante, G.; Fairlie, D. P.; Gahan, R.; Hanson, G.
R.; Pierens, G. K.; van den Brenk, A. L. J. Am. Chem.
Soc. 1996, 118, 10384–10388; (b) Wif, P.; Fritch, P. C.;
Geib, S. J.; Sefler, A. M. J. Am. Chem. Soc. 1998, 120,
4105–4112, and referencescited therein; (c) Deng, S.;
Taunton, J. J. Am. Chem. Soc. 2002, 124, 916–917.
3. For oxazoline synthesis, see: (a) Lowenthal, R. E.; Abiko,
A.; Masamune, S. Tetrahedron Lett. 1990, 31, 6005–6008;
20
1
EtOAc); mp 124–125°C; ½a À 88:6 (c 1.00, CHCl3); H
NMR (300MHz, CDCl3) d D4.19–4.10 (m, 2H), 3.93–3.84
(m, 4H), 3.70 (s, 4H), 3.66 (s, 2H), 2.38 (s, 9H), 1.78–1.70
(m, 2H), 0.82 (d, J = 6.8Hz, 6H), 0.90 (d, J = 6.8Hz, 6H);
13C NMR (75MHz, CDCl3) d 165.4, 137.6, 135.3, 131.9,
126.3, 118.1, 72.2, 70.2, 32.7, 30.4, 19.5, 19.2, 18.1, 17.6,
17.5; MS (EI) m/z (rel intensity) 409 (M+, 76), 366 (100),
324 (33); elemental analysis calcd for C25H35N3O2: C,
73.31; H, 8.61; N, 10.26; found: C, 73.30; H, 8.52; N,
(b) Muller, D.; Umbricht, G.; Weber, B.; Pfaltz, A. Helv.
10.23. Compound 3a: Rf = 0.42 (1:9 MeOH/EtOAc); mp
¨
25
D
Chim. Acta 1991, 74, 232–240; (c) Evans, D. A.; Woerpel,
K. A.; Hinman, M. M.; Faul, M. M. J. Am. Chem. Soc.
1991, 113, 726–728; (d) Bolm, C.; Weickhardt, K.;
Zehnder, M.; Ranff, T. Chem. Ber. 1991, 124,
136–137°C; ½a À 42:6 (c 1.00, CHCl3); 1H NMR
(300MHz, CDCl3) d 4.26 (dd, J = 9.2, 8.1Hz, 1H), 4.18–
4.09 (m, 3H), 3.92–3.83 (m, 4H), 3.75–3.68 (m, 7H), 2.36
(s, 9H), 1.79–1.69 (m, 2H), 1.20 (d, J = 6.6Hz, 3H), 0.83
(d, J = 6.8Hz, 6H), 0.91 (d, J = 6.8Hz, 6H); 13C NMR
(75MHz, CDCl3) d 165.9, 165.8, 136.2, 136.1, 131.1, 131.0,
74.4, 72.2, 70.1, 61.7, 30.7, 30.5, 21.9, 19.2, 18.2, 17.5, 17.4;
MS (EI) m/z (rel intensity) 467 (M+, 100), 424 (24), 382
(17); HRMS (EI) calcd for C28H41N3O3: 467.3148, found:
1173–1180; (e) Vorbruggen, H.; Krolikiewicz, K. Tetra-
¨
hedron 1993, 49, 9353–9372; (f) Denmark, S. E.; Nakaj-
ima, N.; Nicaise, O. J.-C.; Frencher, A.-M.; Edwards, J. P.
J. Org. Chem. 1995, 60, 4884–4892; (g) Wipf, P.;
Venkatraman, S. Tetrahedron Lett. 1996, 37, 4659–4662;