O. Labeeuw et al. / Tetrahedron Letters 45 (2004) 7107–7110
Table 1. Addition of R1M to amides 19–21
7109
Entry
1
Amide
R1Ma
Equiv
1.1
T (°C)
t (h)
Product
Yield (%)
O
19
MeMgBr
0
1
92 (93)b
Ph
Ph
Ph
Me
O
O
2
19
n-BuLi
2
0
1
91 (84)
nBu
3
4
5
6
7
19
19
20
21
21
1.5
1.5
1.1
1.5
2
rt
1
91 (90)
70 (71)
80 (76)
83 (71)
97 (94)
Ph
Li
Ph
DIBALc
DIBALc
DIBALc
MeMgBr
À78
1.5
1.5
2
PhCHO
CHO
À78
Ph
À50 to À30
n-C17H35CHO
O
0
1
nC17H35
Me
a All reactions were carried out in THF on a 1mmol scale.
b Yields in brackets are those reported in the literature1 for the corresponding N-methoxy-N-methylamides.
c Reduction of amides 19–21 with DIBAL were carried out at low temperature to prevent the formation of the corresponding amines.
References and notes
OH
O
OH
O
1. nC8H17Li (2.5 eq.)
THF, -5˚C, 1 h
2. H+
BnO
O
BnO
N
nC8H17
1. Nahm, S.; Weinreb, S. M. Tetrahedron Lett. 1981, 22,
3815–3818.
Me
2. For a review, see: Singh, J.; Satyamurthi, N.; Aidhen, I. S.
J. Prakt. Chem. 2000, 342, 340–347.
3. For a review, see: Mentzel, M.; Hoffmann, H. M. R. J.
Prakt. Chem. 1997, 339, 517–524.
22
2 (72%)
OH
O
4. For a review, see: Sibi, M. P. Org. Prep. Proced. Int. 1993,
25, 15–40.
5. Labeeuw, O.; Blanc, D.; Phansavath, P.; Ratoveloma-
BnO
+
N
O
H
ˆ
nana-Vidal, V.; Genet, J.-P. Eur. J. Org. Chem., 2004,
2352–2358.
23 (14%)
6. Aldridge, D. C.; Turner, W. B. J. Chem. Soc. C, 1971,
2431–2432.
Scheme 6.
7. Graham, S. L.; Scholz, T. H. Tetrahedron Lett. 1990, 31,
6269–6272.
8. For selected examples: (a) Keck, G. E.; McHardy, S. F.;
Murry, J. A. Tetrahedron Lett. 1993, 34, 6215–6218; (b)
Anderson, J. C.; Flaherty, A.; Swarbrick, M. E. J. Org.
Chem. 2000, 65, 9152–9156; (c) Selvamurugan, V.; Aidhen,
I. S. Tetrahedron 2001, 57, 6065–6069; (d) Selnick, H. G.;
Bourgeois, M. L.; Butcher, J. W.; Radzilowsli, E. M.
Tetrahedron Lett. 1993, 34, 2043–2046; (e) Sibi, M. P.;
Sharma, R.; Paulson, K. L. Tetrahedron Lett. 1992, 33,
1941–1944; (f) Romo, D.; Johnson, D. D.; Plamondon, L.;
Miwa, T.; Schreiber, S. L. J. Org. Chem. 1992, 57,
5060–5063; (g) Birbeck, A. A.; Enders, D. Tetrahedron
Lett. 1998, 39, 7823–7826; (h) Alberola, A.; Ortega, A. G.;
Sada¨ba, M. L.; San˜udo, C. Tetrahedron 1999, 55,
6555–6566; (i) Tius, M. A.; Bush-Petersen, J. Synlett
1997, 531–532.
significantly improved 72% yield compared to the results
obtained with N-methoxy-N-methyl amide 1 (5–24%, see
Scheme 1), although a rearrangement product 23, easily
separable by flash chromatography, was also formed in
this reaction (14% yield).15
In summary, an efficient route to N-methyl-O-tert-but-
ylhydroxylamine hydrochloride 6 was devised, which al-
lowed the preparation of the corresponding modified
Weinreb amides. Nucleophilic addition of organoli-
thium and Grignard reagents on these new N-tert-but-
oxy-N-methylamides readily afforded the corres-
ponding ketones and hydride reduction with DIBAL
delivered the corresponding aldehydes in good yields
up to 97%. As demonstrated in the case of our synthesis
of (À)-isoavenaciolide, the replacement of the N-meth-
oxy group by a N-tert-butoxy group in Weinreb amides
could be of synthetic value in organic synthesis.
9. Chimiak, A.; Kolasa, T. Rocz. Chem. 1974, 48, 139–142.
10. This procedure takes advantage of water soluble palla-
ˆ
dium(0) catalysts developed in our laboratory: Genet,
J.-P.; Blart, E.; Savignac, M.; Lemeune, S.; Paris, J.-M.
Tetrahedron Lett. 1993, 34, 4189–4192, and the use of
sodium borohydride as allyl scavenger: Beugelmans, R.;