LETTER
Novel Synthesis of Bromoindolenine
2027
(1 H, td, J = 7.5 Hz, indole), 7.21 (1 H, br d, J = 7.5 Hz,
indole), 7.25 (1 H, br d, J = 7.5 Hz, indole), 7.84 (1 H, br s,
NH of indole), 8.09 (2 H, br d, J = 9.0 Hz, phenyl), 8.21 (2
H, d, J = 9.0 Hz, phenyl). 13C NMR (100 MHz, CDCl3): d =
11.8, 29.5, 39.5, 103.0, 110.4, 117.6, 119.7, 121.6, 124.1,
127.4, 128.1, 129.0, 130.7, 132.9, 135.0, 139.3, 151.2,
174.7. HRMS (FAB): m/z calcd for C18H18N3O6S1 [M + H]:
404.0916. Found: 404.0933.
ated from indole with the base. The structures of the
indolenine-b-lactam 15a and 15b were confirmed by
comparison of the NMR and IR spectra with those of char-
telline and a model compound reported by Weinreb.2a
In summary, we have demonstrated a novel synthesis of
indolenine spiro-b-lactam.17 The realization of this type of
b-lactam formation should open a new way to the synthe-
sis of chartelline-type marine alkaloids. Further synthetic
studies towards chartelline are currently under investiga-
tion.
(12) Data for 15a: IR (KBr): 3423, 2956, 1763, 1589, 1459, 1377
cm–1. 1H NMR (400 MHz, CDCl3): d = 2.35 (3 H, s, -CH3),
2.57 (3 H, s, -N-CH3), 3.26 (1 H, d, J = 15.0 Hz, -CHAHB-),
3.32 (1 H, d, J = 15.0 Hz, -CHAHB-), 7.27 (1 H, br t, J = 7.5
Hz, indole), 7.38 (1 H, d, J = 7.5 Hz, indole), 7.42 (1 H, td,
J = 7.5 Hz, indole), 7.54 (1 H, d, J = 7.5 Hz, indole). 13
C
Acknowledgment
NMR (100 MHz, CDCl3): d = 15.0, 26.7, 46.1, 69.1, 120.9,
122.2, 126.3, 130.4, 133.5, 154.2, 165.8, 180.4. HRMS
(FAB): m/z calcd for C12H13N2O1 [M + H]: 201.1028.
Found: 201.1000.
This work was financially supported by PRESTO, JST and a Grant-
in-Aid for the 21st century COE program from MEXT.
(13) In contrast to the report by Weinreb (2-vinyl substituent
instead of 2-methyl substituent) (ref.2a), products 15a and
15b were stable enough to purify on silica gel
References
(1) (a) Chevolot, L.; Chevolot, A.-M.; Gajhede, M.; Lasen, C.;
Anthoni, U.; Christophersen, C. J. Am. Chem. Soc. 1985,
107, 4542. (b) Anthoni, U.; Chevolot, L.; Lasen, C.; Nielsen,
P. H.; Christophersen, C. J. Org. Chem. 1987, 52, 4709.
(2) For other synthetic studies from other laboratory, see:
(a) Lin, X.; Weinreb, S. M. Tetrahedron Lett. 2001, 42,
2631. (b) Sun, C.; Lin, X.; Weinreb, S. M. Presented at the
19th International Congress of Heterocyclic Chemistry,
Colorado, USA, August 2003; Abstracts p. 324.
(3) Nishikawa, T.; Kajii, S.; Isobe, M. Chem. Lett. 2004, 33,
440.
chromatography.
(14) N-Methylamide 16a was separated as its Boc derivative
from the mixture of 15a and 16a with Boc2O and DMAP.
The structure of 16a was determined by the following
spectroscopic data. IR (KBr): 3296, 2976, 2933, 1732, 1653,
1541, 1459, 1358, 1324, 1137 cm–1. 1H NMR (400 MHz,
CDCl3): d = 1.70 (9 H, s, -Boc), 2.55 (3 H, s, -CH3), 2.71 (3
H, d, J = 5.0 Hz, -NH-CH3), 3.65 (2 H, s, -CH2-), 5.50 (1 H,
br s, -NH-Me), 7.22–7.32 (2 H, m, indole), 7.41 (1 H, br d,
J = 7 Hz, indole), 8.12 (1 H, br d, J = 8.0 Hz, indole). 13
C
NMR (100 MHz, CDCl3): d = 14.0, 26.4, 28.3, 32.0, 84.2,
111.6, 115.6, 117.8, 123.0, 124.1, 129.3, 135.7, 135.8,
150.5, 170.9. HRMS (FAB): m/z calcd for C17H23N2O3 [M +
H]: 303.1709. Found: 303.1672.
(4) The oxindole-b-lactam 4 (R = Bn, MOM) was synthesized
in an analogous way to those described in ref.3; however, the
yields were poor.
(5) Somei, M. Heterocycles 1999, 50, 1157.
(15) Piper, J. R.; Stevens, F. J. J. Heterocycl. Chem. 1966, 95.
(16) Data for 15b: IR (KBr): 3312, 2928, 1762, 1586, 1456, 1377
cm–1. 1H NMR (400 MHz, CDCl3): d = 2.34 (3 H, s, -CH3),
2.55 (3 H, s, -N-CH3), 3.23 (1 H, d, J = 15.0 Hz, -CHAHB-),
3.30 (1 H, d, J = 15.0 Hz, -CHAHB-), 7.24 (1 H, d, J = 8.0 Hz,
indole), 7.41 (1 H, dd, J = 8.0, 1.5 Hz, indole), 7.67 (1 H, d,
J = 1.5 Hz, indole). 13C NMR (100 MHz, CDCl3): d = 15.0,
26.8, 46.1, 69.0, 123.2, 124.0, 124.4, 129.1, 132.5, 155.5,
165.3, 182.2. Anal. Calcd for C12H11BrN2O: C, 51.63; H,
3.97; N, 10.04. Found: C, 51.64; H, 4.05; N, 10.01.
(17) Quite recently, a synthesis of indolenine-3 spiro compounds
through intramolecular SN2-type reaction at the oxime
nitrogen was reported, see: Tanaka, K.; Mori, Y.; Narasaka,
K. Chem. Lett. 2004, 33, 26.
(6) For examples, see: (a) Nakatsuka, S.; Tanino, H.; Kishi, Y.
J. Am. Chem. Soc. 1975, 97, 5008. (b) Nakatsuka, S.;
Tanino, H.; Kishi, Y. J. Am. Chem. Soc. 1975, 97, 5010.
(c) Baldwin, J. E.; Au, A.; Christie, M.; Haber, S. B.;
Hesson, D. J. Am. Chem. Soc. 1975, 97, 5957.
(7) Scott, A. I.; Yoo, S. E.; Chung, S.-K.; Lacadie, J. A.
Tetrahedron Lett. 1976, 17, 1137.
(8) Hone, N. D.; Payne, L. J. Tetrahedron Lett. 2000, 41, 6149.
(9) Singh, S. B.; Tomassini, J. E. J. Org. Chem. 2001, 66, 5504.
(10) Bittner, S.; Knobler, Y.; Frankel, M. Tetrahedron Lett. 1965,
6, 95.
(11) Spectral Data for 14a: Mp 144–148 °C. IR (KBr): 3367,
2914, 1773, 1715, 1534, 1349, 1193 cm–1. 1H NMR (400
MHz, CDCl3): d = 2.29 (3 H, s, -CH3), 3.35 (3 H, s, -N-CH3),
3.64 (2 H, s, -CH2-), 7.03 (1 H, br t, J = 7.5 Hz, indole), 7.11
Synlett 2004, No. 11, 2025–2027 © Thieme Stuttgart · New York