H2/Pd,7 H2/RaNi,8 SnCl2,9 Fe/AcOH,10 Zn/AcOH,11 TiCl3/
NH4OAc,12 and Na2S2O4.13 However, the availability of
starting materials has severely limited the utility of this
approach. While recent advances by Buchwald,12a Rawal,12b
RajanBabu,14 and others15 have given ready access to
o-nitrobenzylcarbonyl compounds, there is still a need for
methods which provide highly functionalized o-nitroben-
zylcarbonyl compounds and their subsequent conversion
to indoles. It was envisioned that nitroketone 3 could be
derived by oxidation of nitrocompound 9 which may be
prepared by employing chemistry previously reported
from these laboratories.16
Syn th esis of Novel KDR Kin a se In h ibitor s
th r ou gh Ca ta lytic Red u ctive Cycliza tion of
o-Nitr oben zylca r bon yl Com p ou n d s
Audrey Wong,* J effrey T. Kuethe, Ian W. Davies, and
David L. Hughes
Department of Process Research, Merck & Co., Inc.,
P.O. Box 2000, Rahway, New J ersey 07065
audrey_wong@merck.com
Received J uly 8, 2004
The synthesis of 9 began with 4-nitrobenzyl bromide
4 (Scheme 2). Reaction of 4 with 1-methanesulfonylpip-
erazine 517 in the presence of Na2CO3 in DMF afforded
nitropiperazine derivative 6 in 99% yield after direct
crystallization of the product from the crude reaction
mixture. Addition of trimethylsilylmethylmagnesium
chloride to 6 in THF at -15 °C followed by oxidation of
the intermediate nitronate with aqueous iodine gave
silyl-nitro compound 7 in 85% yield.16 Condensation of 7
with formylquinoline 818 in the presence of a catalytic
amount of TBAF (25 mol %) provided alcohol 9 as a
colorless foam in 89% isolated yield.19
Abstr a ct: An efficient synthesis of o-nitrobenzylcarbonyl
compounds is demonstrated through the Swern-type oxida-
tion of readily accessible phenethanol analogues. Reductive
cyclization of o-nitrobenzylcarbonyl 3 using catalytic Raney
nickel gives 1H-indol-2-yl-1H-quinoline 2 in 95% yield.
Hydrolysis of 2 affords the KDR kinase inhibitor 1 in
quantitative yield. The examination of the reductive cycliza-
tion reaction and optimization of conditions is described.
Vascular endothelial growth factor (VEGF) is a family
of proteins implicated in angiogenic activity, which is key
to normal tissue repair. However, at elevated levels,
VEGF can also add to the progression of several diseases
including solid tumors, which require new blood vessels
for growth.1 The mitogenic cell surface receptor for VEGF
is the tyrosine kinase KDR (kinase insert domain-
containing receptor), which upon activation through
ligand binding initiates the formation and in-growth of
new blood vessels.2 Tumor growth inhibition has been
demonstrated through blockade of endothelial cell growth
signaling by antibodies against the ligand VEGF and the
receptor KDR, as well as small molecule inhibitors of
KDR kinase activity.3,4a Recently, the potent and selective
KDR inhibitor 1 was identified as a clinical candidate
for use in the treatment of cancer.4 The novel 1H-indol-
2-yl-1H-quinolin-2-one ring system of 1,5 which is the key
pharmacophore, was envisioned as arising from reductive
cyclization of the highly functionalized nitroketone 3
(Scheme 1). In this paper, we present the synthesis of 3
and related nitroketones and optimized conditions for
their conversion to 2-substituted indoles of type 2.
(5) (a) Fraley, M. E.; Hoffman, W. F.; Arrington, K. L.; Hungate, R.
W.; Hartman, G. D.; McFall, R. C.; Coll, K. E.; Rickert, K.; Thomas,
K. A.; McGaughey, G. B. Curr. Med. Chem. 2004, 11, 707. (b) Fraley,
M. E.; Arrington, K. L., Buser, C. A.; Ciecko, P. A.; Coll, K. E.;
Fernandes, C.; Hartman, G. D.; Hoffman, W. F.; Lynch, J . J .; McFall,
R. C.; Rickert, K.; Singh, R.; Smith, S.; Thomas, K. A.; Wong, B. K.
Bioorg. Med. Chem. Lett. 2004, 14, 351.
(6) (a) Sundberg, R. J . In The Chemistry of Indoles; Academic
Press: New York, 1970; Chapter 3. (b) Brown, R. K. In Indoles;
Houlihan, W. J ., Ed.; Wiley-Interscience: New York, 1972; Part 1,
Chapter 2.
(7) (a) Cruces, J .; Estevez, J . C.; Estevez, R. J .; Castedo, L.
Heterocycles 2000, 53, 1041. (b) Hengartner, U.; Batcho, A. D.; Blount,
J . F.; Leimgruber, M. E.; Larscheid, M. E.; Scott, J . W. J . Org. Chem.
1979, 44, 3748 and references therein. (c) Selvakumar N.; Azhagan A.
Malar; Srinivas D.; Krishna, G. Gopi. Tetrahedron Lett. 2002, 43, 9175.
(d) Suzuki, H.; Gyoutoku, H.; Yokoo, H.; Shinba, M.; Sato, Y.; Yamada,
H.; Murakami, Y. Synth. Lett. 2000, 1196.
(8) (a) Blair, J .; Newbold, G. T. J . Chem. Soc. 1955, 2871. (b) Ruggli,
P.; Dinger, A. Helv. Chim. Acta 1939, 22, 908. (c) Cardwell, K.; Hewitt,
B.; Ladlow, M.; Magnus, P. J . Am. Chem. Soc. 1988, 110, 2242.
(9) Rosenmund, P.; Haase, W. H. Chem. Ber. 1966, 99, 2504.
(10) (a) Raucher, S.; Koolpe, G. A. J . Org. Chem. 1983, 48, 2066. (b)
Owsley, D. C.; Bloomfield, J . J . Synthesis 1977, 118.
(11) (a) Piper, J . R.; Stevens, F. J . J . Heterocycl. Chem 1966, 3, 95.
(b) Lindwall, H. G.; Mantell, G. J . J . Org. Chem. 1953, 18, 345.
(12) (a) Rutherford, J . L.; Rainka, M. P.; Buchwald, S. L. J . Am.
Chem. Soc. 2002, 124, 15168. (b) Iwama, T.; Birman, V. B.; Kozmin,
S. A.; Rawal, V. H. Org. Lett. 1999, 1, 673. (c) Moody, C. J .; Rahimtoola,
K. F. J . Chem. Soc., Perkin Trans. 1 1990, 673.
(13) (a) Clark, C. I.; White, J . M.; Kelly, D. P.; Martin, R. F.;
Lobachevsky, P. Aust. J . Chem. 1998, 51, 243. (b) Finger, G. C.;
Gortatowski, M. J .; Shiley, R. H.; White, R. H. J . Am. Chem. Soc. 1959,
81, 94.
One of the oldest effective methods for the construction
of indoles and indolinones is reductive cyclization of
o-nitrobenzylcarbonyl compounds.6 The transformation
has been carried out with a variety of reagents including
(1) Thomas, K. J . Biol. Chem. 1996, 271, 603.
(14) (a) RajanBabu, T. V.; Reedy, G. S.; Fukunaga, T. J . Am. Chem.
Soc. 1985, 107, 5473. (b) RajanBabu, T. V.; Chenard, B. L.; Petti, M.
A. J . Org. Chem. 1986, 51, 1704.
(15) Banwell, M. G.; Kelly, B. D.; Kokas, O. J .; Lupton, D. W. Org.
Lett. 2003, 5, 2497.
(16) (a) Kuethe, J . T.; Wong, A.; Davies, I. W. Org. Lett. 2003, 5,
3721. (b) Kuethe, J . T.; Wong, A.; Davies, I. W. Org. Lett. 2003, 5, 3975.
(17) J acob, R. M. German Patent DE828695, 1950.
(18) Wai, J . S.; Williams, T. M.; Bamberger, D. L.; Fisher, T. E.;
Hoffman, J . M.; Hudcosky, R. J .; MacTough, S. C.; Rooney, C. S.; Saari,
W. S.; Thomas, C. M.; Goldman, M. E.; O′Brien, J . A.; Emini, E. A.;
Nunberg, J . H.; Quintero, J . C.; Schleif, W. A.; Anderson, P. S. J . Med.
Chem. 1993, 36, 249.
(2) Bold, G.; Altmann, K.-H.; Frei, J .; Lang, M.; Manley, P. W.;
Traxler, P.; Wietfield, B.; Bruggen, J .; Buchdunger, E.; Cozens, R.;
Ferrari, S.; Furet, P.; Hofmann, F.; Martiny-Baron, G.; Mestan, J .;
Rosel, J .; Sills, M.; Stover, D.; Acemoglu, F.; Boss, E.; Emmenegger,
R.; Lasser, L.; Masso. E.; Roth, R.; Schlachter, C.; Vetterli, W.; Wyss,
D.; Wood, J . M. J . Med. Chem. 2000, 43, 2310.
(3) Kim, K. J in; Li, B.; Winer, J .; Armanini, M.; Gillett, N.; Phillips,
H. S.; Ferrara, N. Nature 1993, 362, 841.
(4) (a) Fraley, M. E.; Arrington, K. L.; Bilodeau, M. T.; Hartman,
G. A.; Hoffman, W. F.; Kin, Y.; Hungate, R. W. US Patent 6,306,874
B1, 2001. (b) Fraley, M. E. Presented at the 29th National Medicinal
Chemistry Symposium, Madison, WI, J une 2004; Abstract 14.
10.1021/jo048843m CCC: $27.50 © 2004 American Chemical Society
Published on Web 10/02/2004
J . Org. Chem. 2004, 69, 7761-7764
7761