R. Liang et al. / Bioorg. Med. Chem. Lett. 17 (2007) 587–592
591
2003, 284, E671; (c) Sloop, K. W.; Michael, M. D. Drugs
Future 2004, 29, 835.
2. Unger, R. H. Metabolism 1978, 27, 1691.
Day -1
Day 3
175
150
125
100
72
*
Day 10
3. (a) Brand, C. L.; Rolin, B.; Jorgensen, P. N.; Svendsen, I.;
Kristensen, J. S.; Holst, J. J. Diabetologia 1994, 37, 985;
(b) Brand, C. L.; Jorgensen, P. N.; Knigge, U.; Warberg,
J.; Svendsen, I.; Kristensen, J. S.; Holst, J. J. Am.
J. Physiol. 1995, 269, E469; (c) Brand, C. L.; Jorgensen,
P. N.; Svendsen, I.; Holst, J. J. Diabetes 1996, 45, 1076; (d)
Brand, C. L.; Hansen, B.; Groneman, S.; Boysen, M.;
Holst, J. J. Diabetes 2000, 49, A81; (e) Liang, Y.; Osborne,
M. C.; Monia, B. P.; Bhanot, S.; Gaarde, W. A.; Reed, C.;
She, P.; Jetton, T. L.; Demarest, K. T. Diabetes 2004, 53,
410; (f) Sloop, K. W.; Cao, J. X.-C.; Siesky, A. M.; Zhang,
H. Y.; Bodenmiller, D. M.; Cox, A. L.; Jacobs, S. J.;
Moyers, J. S.; Owens, R. A.; Showalter, A. D.; Brenner,
M. B.; Raap, A.; Gromada, J.; Berridge, B. R.; Monteith,
D. K. B.; Porksen, N.; McKay, R. A.; Monia, B. P.;
Bhanot, S.; Watts, L. M.; Michael, M. D. J. Clin. Invest.
2004, 113, 1571.
87
*
106
*
99
*
n=13
n=12
n=10
n=11
* % correction to lean controls above bar
Figure 4. Effect of administration of compound 4a on non-fasting
blood glucose in the hGCGR mice which have been fed a high fat diet
to induce moderate hyperglycemia.
4. Petersen, K. F.; Sullivan, J. T. Diabetologia 2001, 44, 2018.
5. (a) Ling, A. Drugs Future 2002, 27, 987; (b) Ling, A. L.;
Wasserman, J. I. Expert Opin. Ther. Patents 2003, 13, 15;
(c) Kurukulasuriya, R.; Link, J. T. Expert Opin. Ther.
Patents 2005, 15, 1739; (d) Madsen, P.; Knudsen, L. B.;
Wiberg, F. C.; Carr, R. D. J. Med. Chem. 1998, 41, 5150;
(e) De Laszlo, S. E.; Hacker, C.; Li, B.; Kim, D.;
MacCoss, M.; Mantlo, N.; Pivnichny, J. V.; Colwell, L.;
Koch, G. E.; Cascieri, M. A.; Hagmann, W. K. Bioorg.
Med. Chem. Lett. 1999, 9, 641; (f) Chang, L. L.; Sidler, K.
L.; Cascieri, M. A.; De Laszlo, S.; Koch, G.; Li, B.;
MacCoss, M.; Mantlo, N.; O’Keefe, S.; Pang, M.;
Rolando, A.; Hagmann, W. K. Bioorg. Med. Chem. Lett.
2001, 11, 2549; (g) Ladouceur, G. H.; Cook, J. H.;
Hertzog, D. L.; Jones, J. H.; Hundertmark, T.; Korpusik,
M.; Lease, T. G.; Livingston, J. N.; MacDougall, M. L.;
Osterhout, M. H.; Phelan, K.; Romero, R. H.; Schoen, W.
R.; Shao, C.; Smith, R. A. Bioorg. Med. Chem. Lett. 2002,
12, 3421; (h) Madsen, P.; Ling, A.; Plewe, M.; Sams, C.
K.; Knudsen, L. B.; Sidelmann, U. G.; Ynddal, L.; Brand,
C. L.; Andersen, B.; Murphy, D.; Teng, M.; Truesdale, L.;
Kiel, D.; May, J.; Kuki, A.; Shi, S.; Johnson, M. D.;
Teston, K. A.; Feng, J.; Lakis, J.; Anderes, K.; Gregor, V.;
Lau, J. J. Med. Chem. 2002, 45, 5755; (i) Kurukulasuriya,
R.; Sorensen, B. K.; Link, J. T.; Patel, J. R.; Jae, H.-S.;
Winn, M. X.; Rohde, J. R.; Grihalde, N. D.; Lin, C. W.;
Ogiela, C. A.; Adler, A. L.; Collins, C. A. Bioorg. Med.
Chem. Lett. 2004, 14, 2047.
6. (a) Ling, A.; Plewe, M. B.; Truesdale, L. K.; Lau, J.;
Madsen, P.; Sams, C.; Behrens, C.; Vagner, J.; Christen-
sen, I. T.; Lundt, B. F.; Sidelmann, U. G.; Thøgersen, H.
WO 00/69810, 2000; (b) Jørgensen, A. S.; Christensen, I.
T.; Kodra, J. T.; Madsen, P.; Behrens, C.; Sams, C.; Lau,
J. WO 02/00612 A1, 2002.
7. Qureshi, S. A.; Candelore, M. R.; Xie, D.; Yang, X.; Tota,
L. M.; Ding, V. D.-H.; Li, Z.; Bansal, A.; Miller, C.;
Cohen, S. M.; Jiang, G.; Brady, E.; Saperstein, R.; Duffy,
J. L.; Tata, J. R.; Chapman, K. T.; Moller, D. E.; Zhang,
B. B. Diabetes 2004, 53, 3267.
8. Shen, D.-M.; Zhang, F.; Brady, E. J.; Candelore, M. R.;
Yang, Q. D.; Ding, V. D.-H.; Dragovic, J.; Feeney, W. P.;
Jiang, G.; McCann, P. E.; Mock, S.; Qureshi, S. A.;
Saperstein, R.; Shen, X.; Tamvakopoulos, C.; Tong, X.;
Tota, L. M.; Wright, M. J.; Yang, X.; Zheng, S.;
Chapman, K. T.; Zhang, B. B.; Tata, J. R.; Parmee, E.
R. Bioorg. Med. Chem. Lett. 2005, 15, 4564.
significant response was observed at doses as low as
3 mg/kg. The glucose corrections to vehicle controls
were 51%, 59%, and 122% at 3, 10, and 30 mg/kg,
respectively.
Finally, compound 4a was evaluated for its ability to
lower non-fasting blood glucose in transgenic mice
which have been placed on a high fat diet for 13 weeks
to induce moderate hyperglycemia.16 The initial glucose
levels were about 170 mg/dL in the diabetic mice and
about 110 mg/dL in the lean mice. Administration of
compound 4a as an admixture in the chow to the diabet-
ic mice gave significant correction of the glucose levels to
lean mouse control levels at 3 mg/kg by day 3 (Fig. 4).
Most notable, full glucose correction to lean levels was
achieved with 10 mg/kg by day 3 and maintained out
to day 10.
In summary, we have discovered a series of structurally
novel compounds, which are potent and selective gluca-
gon receptor antagonists. For example, one of the most
potent compounds 23b has an IC50 of 5.9 nM in
glucagon-stimulated cAMP accumulation assay with
>500-fold selectivity over hGIP. Significantly, one repre-
sentative compound 4a from this series has an accept-
able pharmacokinetic profile in the mice and
suppressed a glucagon-stimulated increase of plasma
glucose levels in transgenic mice. In the same transgenic
mice compound 4a was also efficacious in correcting
hyperglycemia induced by a high fat diet at doses as
low as 3.0 mg/kg.
These data reaffirm the findings that small molecule
antagonists of the human glucagon receptor may have
the potential to control hepatic glucose production
which is exacerbated in type II diabetics. Further work
on related series of compounds from these laboratories
will be reported in the near future.
References and notes
9. The following patent also disclosed structures such as
these. Kurukulasuriya, R.; Link, J. T.; Patel, J. R.;
Sorensen, B. K. US 2004/0209928 A1, 2004.
1. (a) Zhang, B. B.; Moller, D. B. Curr. Opin. Chem. Biol.
2000, 4, 461; (b) Jiang, G.; Zhang, B. B. Am. J. Physiol.