Table 1 Photophysical data (at 293 K) and thermal analyses of OFEG
abs/nma (CH2Cl2)
labs/nm (film)
Egap/eV
lem/nm (CH2Cl2)
WF
tF/ns
(kr)F/s21
Tdec/uC
b
OFEG
l
1a
1b
1c
2a
2b
2c
337 (12.8)
343 (15.6)
344 (20.7)
339 (13.0)
345 (16.9)
346 (22.3)
339
343
345
341
347
348
3.57
3.51
3.49
3.54
3.49
3.47
362, 379
368, 384
369, 386
364, 379
371, 386
371, 386
0.78
0.90
0.92
0.35
0.66
0.75
1.18
1.18
1.16
1.09
1.08
1.05
6.6 6 108
7.6 6 108
7.9 6 108
3.2 6 108
6.1 6 108
7.1 6 108
447
442
442
442
446
443
a e (104 dm3 mol21 cm21) values are shown in parentheses. b Measured in CH2Cl2 relative to quinine sulfate in 0.1 N H2SO4 (WF ~ 0.54),
lex ~ 313 nm.
Table 2 Structural, thermal stability and emission data (at 20 K) of metallopolymers 3a–c and 4a–c
(knr)P/s21
(kr)P/s21
a
a
Polymer
Mw
Mn
Tdec/uC
lem/nm (film)
tP/ms
WP
3a
3b
3c
4a
4b
4c
42 970
22 950
22 790
23 970
28 350
22 600
13 580
11 150
16 150
10 400
12 830
17 550
410
414
407
404
407
418
412, 547
411, 544
410, 544
414, 548
411, 545
411, 545
1.27
2.08
1.41
1.32
1.21
1.16
0.45
0.43
0.45
0.17
0.18
0.20
4.3 6 105
2.7 6 105
3.9 6 105
6.3 6 105
6.8 6 105
6.9 6 105
3.5 6 105
2.1 6 105
3.2 6 105
1.3 6 105
1.5 6 105
1.7 6 105
a Calibration against polystyrene standards.
both fluorescent and phosphorescent emissions arise from ligand-
centred (pp)* transitions. In dilute fluid solutions, we observe an
harvesting from the T1 state and one can take benefit from the large
yield and radiative decay rate of triplet excitons.
Financial support from the Hong Kong Research Grants
Council (HKBU2054/02P and 2022/03P) and HKBU (FRG/01-02/
II-48) is gratefully acknowledged.
1
intense (pp*) fluorescence peak near 400 nm for 3a–c and 4a–c,
which do not display a large shift at high concentrations, excluding
an excimer origin. At low temperatures, lower-lying spin-forbidden
phosphorescence bands emerge at around 545 nm and the
substantial Stokes shifts of these peaks from the dipole-allowed
absorptions, plus the long emission lifetimes in the microsecond
range are suggestive of their triplet parentage, and they are assigned
to the 3(pp*) states of the organic chromophores. The triplet energy
does not vary much with oligomer chain length, i.e. the lowest T1
state is confined to a single repeat unit. Variation of the R group
does not seem to alter this strong confinement. Insertion of a
conjugation hindered GeR2 group in 3 and 4 shifts the
phosphorescence bands to the blue relative to 5.7 Values of
DE(So–T1) (energy gap between So and T1) are found to be ca.
2.27–2.28 eV for both series. This corresponds to S1–S0 gaps of
y3.0 eV. The DE(S1–T1) values lie within the narrow range of
0.73–0.75 eV, in line with the S1–T1 energy gap of 0.7 ¡ 0.l eV for
metal polyynes of group 10–12 elements.9
Notes and references
1 (a) P. Nguyen, P. Go´mez-Elipe and I. Manners, Chem. Rev., 1999, 99,
1515; (b)C.D.Entwistle,A.S.Batsanov,J.A.K.Howard,M.A.Foxand
T. B. Marder, Chem. Commun., 2004, 702; (c) Modern Acetylenic
Chemistry, ed. P. J. Stang and F. Diederich, Wiley-VCH, Weinheim, 1995.
2 (a) N. J. Long and C. K. Williams, Angew. Chem., Int. Ed., 2003, 42,
2586; (b) U. H. F. Bunz, Chem. Rev., 2000, 100, 1605; (c) I. Manners,
Synthetic Metal-Containing Polymers, Wiley-VCH, Weinheim, 2004.
3 (a) R. J. P. Corriu, Angew. Chem., Int. Ed., 2000, 39, 1376;
(b) W. E. Douglas, D. M. H. Guy, A. K. Kar and C. Wang, Chem.
Commun., 1998, 2125.
4 (a) X. Gong, M. R. Robinson, J. C. Ostrowski, D. Moses, G. C. Bazan
and A. J. Heeger, Adv. Mater., 2002, 14, 581; (b) M. A. Baldo,
M. E. Thompson and S. R. Forrest, Nature, 2000, 403, 750; (c) A. Ko¨hler,
J. S. Wilson and R. H. Friend, Adv. Mater., 2002, 14, 701.
The phosphorescence lifetimes (tP), quantum yields (WP), and
radiative ((kr)P) and nonradiative ((knr)P) decay rates at 20 K are
listed in Table 2. Although the measured WP values are relatively
insensitive to the value of m, they are found to vary with the ER2
group (E ~ Si, Ge). The GeMe2 systems give more efficient
phosphorescence than the GePh2 congeners by over 2 times. But,
replacement of GePh2 by SiPh2 reduces WP by almost half (WP y
10–13% for a SiPh2 system) that can be correlated to the heavy-
atom effect associated with the Ge atoms in the former case. The
markedly different properties exhibited by these germylene
polymers compared with their silylene analogues are mirrored by
differences in other pairs of Ge and Si systems.10 The (kr)P values at
20 K are (2.1–3.5) 6105 s21 for 3a–c and (1.3–1.7) 6105 s21 for 4a–
c. Relative to 5 ((kr)P y 4.4 6 104 s21), insertion of the germylene
component can increase (kr)P by about 1 order of magnitude. Now,
we are able to get comparable orders of magnitude for (knr)P and
(kr)P which have never been observed in polymetallaynes reported so
far. For phosphorescence in aromatic hydrocarbons, (kr)P lies
5 (a) R. E. Martin and F. Diederich, Angew. Chem., Int. Ed., 1999, 38,
1350; (b) Electronic Materials: The Oligomer Approach, ed. K. Mu¨llen
and G. Wegner, Wiley-VCH, Weinheim, 1998.
6 Crystal data for 1a: C60H72Ge, Mw ~ 865.82, monoclinic, space group
˚
C2/c, a ~ 33.747(2), b ~ 10.2041(5), c ~ 31.427(1) A, b ~ 91.242(1)u,
3
V ~ 10819.8(9) A , Z ~ 8, m(Mo–Ka) ~ 0.600 mm21. 65722 reflections
˚
measured, 26369 unique, R(int) ~ 0.106. Final R ~ 0.0860 and Rw ~
0.1050 for 4866 observed reflections with I w 1.5s(I). For 2a: C70H76Ge,
Mw ~ 989.96, monoclinic, space group P2/c, a ~ 9.1566(7), b ~
3
˚
˚
12.0396(9), c ~ 26.852(2) A, b ~ 97.021(2)u, V ~ 2938.0(4) A , Z ~ 2,
m(Mo–Ka) ~ 0.560 mm21.17699 reflections measured, 7122 unique,
R(int) ~ 0.038. Final R ~ 0.0510 and Rw ~ 0.0530 for 4172 observed
reflections with I w 1.5s(I). CCDC 237762–237763. See http://
or other electronic format.
7 W.-Y. Wong, G.-L. Lu, K.-H. Choi and J.-X. Shi, Macromolecules,
2002, 35, 3506.
8 Y.-J. Miao, W. G. Herkstroeter, B. J. Sun, A. G. Wong-Foy and
G. C. Bazan, J. Am. Chem. Soc., 1995, 117, 11407.
9 (a) J. S. Wilson, N. Chawdhury, M. R. A. Al-Mandhary, M. Younus,
M. S. Khan, P. R. Raithby, A. Ko¨hler and R. H. Friend, J. Am. Chem.
Soc., 2001, 123, 9412; (b) H.-Y. Chao, W. Lu, Y. Li, M. C. W. Chan,
C.-M. Che, K.-K. Cheung and N. Zhu, J. Am. Chem. Soc., 2002, 124,
14696; (c) W.-Y. Wong, L. Liu and J.-X. Shi, Angew. Chem., Int. Ed.,
2003, 42, 4064.
10 (a) A. C. Spivey, D. J. Turner and S. Yeates, Org. Lett., 2002, 4, 1899;
(b) J. L. Bre´fort, R. J. P. Corriu, Ph. Gerbler, C. Gue´rin, B. J. L. Henner,
A. Jean, Th. Kuhlmann, F. Garnier and A. Yassar, Organometallics,
1992, 11, 2500.
typically between 0.1 and 1 s21 11
So, heavy-atom derivatization
.
using Pt and Ge atoms together with conjugation interruption by the
latter can greatly boost (kr)P values by ca. 5 orders of magnitude. It is
likely that the high energy benzene stretching modes of the Ph group
is efficient at promoting (knr)P for 4a–c, making WP and (kr)P values
smaller than those in 3a–c.
In summary, we have developed a novel approach based on the
heavy Ge conjugation-interrupter in metallopolymers that can limit
ECL and result in much larger (kr)P values. The present work has
great potential to excel in optoelectronics that demand light energy
11 (a) N. J. Turro, Modern Molecular Photochemistry, University Science
Books, Mill Valley, CA, USA, 1991.
C h e m . C o m m u n . , 2 0 0 4 , 2 4 2 0 – 2 4 2 1
2 4 2 1