2,3-Dideoxy Hexenopyranosides as Antitubercular Agents
Journal of Medicinal Chemistry, 2007, Vol. 50, No. 13 2949
(8) Jones, P. B.; Parrish, N. M.; Houston, T. A.; Stapon, A.; Bansal, N.
P.; Dick, J. D.; Townsend, C. A. A new class of antituberculosis
agents. J. Med. Chem. 2000, 43, 3304-3314.
(29) Pastor, M.; Cruciani, G.; McLay, I.; Pickett, S.; Clementi, S. Grid-
independent descriptors (GRIND): a novel class of alignment-
independent three-dimensional molecular descriptors. J. Med. Chem.
2000, 3, 3233-3243.
(30) Consonni, V.; Todeschini, R.; Pavan, M. Structure/response correla-
tions and similarity/diversity analysis by GETAWAY descriptors.
1. Theory of the novel 3D molecular descriptors. J. Chem. Inf.
Comput. Sci. 2002, 42, 682-692.
(31) Consonni, V.; Todeschini, R.; Pavan, M.; Gramatica, P. Structure/
response correlations and similarity/diversity analysis by GETAWAY
descriptors. 2. Application of the novel 3D molecular descriptors to
QSAR/QSPR studies. J. Chem. Inf. Comput. Sci. 2002, 42, 693-
705.
(32) Bagchi, M. C.; Maiti, B. C.; Mills, D.; Basak, S. C. Usefulness of
graphical invariants in quantitative structure-activity correlations of
tuberculostatic drugs of the isonicotinic acid hydrazide type. J. Mol.
Model. 2004, 10, 102-111.
(33) Bagchi, M. C.; Mills, D.; Basak, S. C. Quantitative structure-activity
relationship (QSAR) studies of quinolone antibacterials against M.
fortuitum and M. smegmatis using theoretical molecular descriptors.
J. Mol. Model. 2007, 13, 111-120.
(34) Cratteri, P.; Romanelli, M. N.; Cruciani, G.; Bonaccini, C.; Melani,
F.; GRIND-derived pharmacophore model for a series of alpha-
tropanyl derivative ligands of the sigma-2 receptor. J. Comput.-Aided.
Mol. Des. 2004, 18, 361-374.
(35) Gonzalez, M. P.; Suarez, P. L.; Fall, Y.; Gomez, G. Quantitative
structure-activity relationship studies of vitamin D receptor affinity
for analogues of 1alpha,25-dihydroxyvitamin D3. 1: WHIM descrip-
tors. Bioorg. Med. Chem. Lett. 2005, 15, 5165-5169.
(36) Todeschini, R.; Consonni, V. Dragon software (version 3.0-2003),
(37) Roth, W.; Pigman, W. In Methods in Carbohydrate Chemistry;
Whistler, R. L., Wolfrom, M. L., Eds.; Academic Press Inc.: New
York, 1963; Vol. 11, pp 405-407.
(38) Ferrier, R. J. Substitution-with-allylic-rearrangement reactions of
glycal derivatives. In Topics in Current Chemistry; Springer-
Verlag: Berlin, 2001; Vol. 215, pp 153-175 and references cited
therein.
(39) Prevost, N.; Rouessac, F. A novel route to pyrimidine isodideoxy-
nucleosides via Michael-type addition on unsaturated modified sugars.
Synth. Commun. 27, 1997, 2325-2335.
(40) Fraser-Reid, B.; McLean, A.; Usherwood, E. W.; Yunker, M.
Pyranosiduloses. II. The synthesis and properties of some alkyl 2,3-
dideoxy-2-enopyranosid-4-uloses. Can. J. Chem. 1970, 48, 2877-
2884.
(41) (a) Morita, K-i.; Suzuki, Z.; Hirose, H. A Tertiary phosphine-catalyzed
reaction of acrylic compounds with aldehydes. Bull. Chem. Soc. Jpn.
1968, 41, 2815. (b) Baylis, A. B.; Hillman, M. E. D. German Patent
2155113, 1972; Chem. Abstr. 1972, 77, 34174q.
(42) (a) Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Recent advances in
the Baylis-Hillman reaction and applications. Chem. ReV. 2003, 103,
811-891. (b) Langer, P. New strategies for the development of an
asymmetric version of the Baylis-Hillman reaction Angew. Chem.,
Int. Ed. 2000, 39, 3049-3052. (c) Ciganek, E. The Catalyzed
R-hydroxyalkylation and R-aminoalkylation of activated olefins
(The Morita-Baylis-Hillman Reaction) In Organic Reactions;
Paquette, L. A., Ed.; Wiley: New York; 1997; Vol. 51, pp 201-
350. (d) Basavaiah, D.; Rao, P. D.; Hyma, R. S. The Baylis-Hillman
(9) Pasqualoto, K. F. M.; Ferreira, E. I. An approach for the rational
design of new antituberculosis agents. Curr. Drug Targets 2001, 2,
427-437.
(10) Teodori, E.; Dei, S.; Scapecchi, S.; Gualtieri, F. The medicinal
chemistry of multidrug resistance (MDR) reversing drugs. Il Farmaco
2002, 57, 385-415.
(11) Frieden, T. R.; Sterling, T. R.; Munsiff, S. S.; Watt, C. J.; Dye, C.
Tuberculosis. Lancet 2003, 362, 887-899.
(12) Smith, C. V.; Sharma, V.; Sacchettini, J. C. TB drug discovery:
Addressing issues of persistence and resistance. Tuberculosis 2004,
84, 45-55.
(13) Bayles, K. W. The bactericidal action of penicillin: New clues to
an unsolved mystery. Trends Microbiol. 2000, 8, 274-278.
(14) Katz, A. H.; Caufield, C. E. Structure-based design approaches to
cell wall biosynthesis inhibitors. Curr. Pharm. Des. 2003, 9, 857-
866.
(15) McNeil, M.; Wallner, S. J.; Hunter, S. W.; Brennan, P. J. Demonstra-
tion that the galactosyl and arabinosyl residues in the cell-wall
arabinogalactan of Mycobacterium leprae and Myobacterium tuber-
culosis are furanoid. Carbohydr. Res. 1987, 166, 299-308.
(16) Daffe, M.; Brennan, P. J.; McNeil, M. Predominant structural features
of the cell wall arabinogalactan of Mycobacterium tuberculosis as
revealed through characterization of oligoglycosyl alditol fragments
by gas chromatography/mass spectrometry and by 1H and 13C NMR
analyses. J. Biol. Chem. 1990, 265, 6734-6743.
(17) Lee, R. E.; Smith, M. D.; Nash, R. J.; Griffiths, R. C.; McNeil, M.;
Grewal, R. K.; Yan, W.; Besra, G. S.; Brennan, P. J.; Fleet, G. W.
J. Inhibition of UDP-Gal mutase and mycobacterial galactan bio-
synthesis by pyrrolidine analogues of galactofuranose. Tetrahedron
Lett. 1997, 38, 6733-6736.
(18) (a) Pathak, A. K.; Pathak, V.; Seitz, L.; Maddry, J. A.; Gurcha, S.
S.; Besra, G. S.; Suling, W. J.; Reynolds, R. C. Studies on (â,1f5)
and (â,1f6) linked octyl Galfdisaccharides as substrates for myco-
bacterium galactosyltransferase activity. Bioorg. Med. Chem. 2001,
9, 3129-3143. (b) Pathak, A. K.; Pathak, V.; Maddry, J. A.; Suling,
W. J.; Gurcha, S. S.; Besra, G. S.; Reynolds, R. C. Studies on R-
(1f5) linked octyl arabinofuranosyl disaccharides for mycobacterial
arabinosyl transferase activity. Bioorg. Med. Chem. 2001, 9, 3145-
3151.
(19) Wen, X.; Crick, D. C.; Brennan, P. J.; Hultin, P. G. Analogues of
the mycobacterial arabinogalactan linkage disaccharide as cell wall
biosynthesis inhibitors. Bioorg. Med. Chem. 2003, 11, 3579-3587.
(20) Centrone, C. A.; Lowary, T. L. Sulfone and phosphinic acid analogs
of decaprenolphosphoarabinose as potential anti-tuberculosis agents.
Bioorg. Med. Chem. 2004, 12, 5495-5503.
(21) Cren, S.; Gurcha S. S.; Blake A. J.; Besra, G. S.; Thomas N. R.
Synthesis and biological evaluation of new inhibitors of UDPGalf
transferase-a key enzyme in M. tuberculosis cell wall biosynthesis.
Org. Biomol. Chem. 2004, 2, 2418-2420.
(22) Pathak, R.; Shaw, A. K.; Bhaduri, A. P.; Chandrasekhar, K. V. G.;
Srivastava, A.; Srivastava, K. K.; Chaturvedi, V.; Srivastava, R.;
Srivastava, B. S.; Arora, S.; Sinha, S. Higher acyclic nitrogen
containing deoxy sugar derivatives: A new lead in the generation
of antimycobacterial chemotherapeutics. Bioorg. Med. Chem. 2002,
10, 1695-1702.
(23) Pathak, R.; Pant, C. S.; Shaw, A. K.; Bhaduri, A. P.; Gaikwad, A.
N.; Sinha, S.; Srivastava, A.; Srivastava, K. K.; Chaturvedi, V.;
Srivastava, R.; Srivastava, B. S. Baylis-Hillman Reaction: Conve-
nient ascending syntheses and biological evaluation of acyclic deoxy
monosaccharides as potential antimycobacterial agents. Bioorg. Med.
Chem. 2002, 10, 3187-3196.
(24) Gupta, M. K.; Sagar, R.; Shaw, A. K.; Prabhakar, Y. S. CP-MLR
directed QSAR studies on the antimycobacterial activity of func-
tionalized alkenolsstopological descriptors in modeling the activity.
Bioorg. Med. Chem. 2005, 13, 343-351.
reaction:
A
novel carbon-carbon bond forming reaction.
Tetrahedron 1996, 52, 8001-8062. (e) Drewes, S. E.; Roos, G. H.
P. Synthetic potential of the tertiary-amine-catalysed reaction of
activated vinyl carbanions with aldehydes. Tetrahedron 1988, 44,
4653-4670.
(43) Pathak, R.; Shaw, A. K.; Bhaduri, A. P. Chain extension of acyclic
sugar derivatives via the Baylis-Hillman reaction. Tetrahedron 2002,
58, 3535-3541.
(25) (a) Couladouros, E. A.; Strongilos, A. T. Generation of libraries of
pharmacophoric structures with increased complexity and diversity
by employing polymorphic scaffolds. Angew. Chem., Int. Ed. 2002,
41, 3677-3680. (b) Georgiadis, M. P.; Couladouros, E. A.; Delitheos,
A. K. Synthesis and antimicrobial properties of 2H-pyran-3(6H)-
one derivatives and related compounds. J. Pharm. Sci. 1992, 81,
1126-1131.
(26) Todeschini, R.; Lasagni, M.; Marengo, E. New molecular descriptors
for 2D and 3D structures theory: Part 1. J. Chemom. 1994, 8, 263-
272.
(27) Silverman, B. D.; Platt, D. E. CoMMA: Comparative molecular
moment analysis. 3D-QSAR without molecular superposition. J. Med.
Chem. 1996, 39, 2129-2140.
(28) Silverman, B. D. Three-dimensional moments of molecular property
fields. J. Chem. Inf. Comput. Sci. 2000, 40, 1470-1476.
(44) (a) Sagar, R.; Pant, C. S.; Pathak, R.; Shaw, A. K. A substrate
controlled, very highly diastereoselective Morita-Baylis-Hillman
reaction: A remote activation of the diastereofacial selectivity in the
synthesis of C-3-branched deoxysugars. Tetrahedron 2004, 60,
11399-11406. (b) In 33a the MBH-adduct derived reduced products
were reported as in threo conformation. Now they are revised as in
erytho conformation based on the X-ray analysis of compound 4dr.
(c) Sagar, R., Saquib, M., Shaw, A. K., Gaikwad, A. N., Sinha, S.
K., Srivastava, A., Chaturvedi, V., Manju, Y. K., Srivastava, R.,
Srivastava, B. S. C-3 Alkyl or arylalkyl substituted 2,3-dideoxy
glucopyranosides and a process for preparation thereof. Indian Patent
0533DEL2006, Ref. No. 0210NF2005/IN, 2006.
(45) Cahn, R. S.; Ingold, C.; Prelog, V. Specification of molecular chirality.
Angew. Chem., Int. Ed. Engl. 1966, 5, 385-415.