C O M M U N I C A T I O N S
Table 2. Enantioselective Alkylation of Tetrasubstituted Tin
stereocenters. To our knowledge, it also represents the only
transition-metal-catalyzed system for R-alkylation of carbonyl
substrates with alkyl halides. The synthetic and mechanistic
implications of this discovery are the focus of our ongoing efforts.
Enolatesa
Acknowledgment. This work was supported by the NIH (GM
43214) and by a predoctoral fellowship from the Department of
Defense to A.G.D.
Supporting Information Available: Representative experimental
procedures, characterization data, and chiral chromatographic analyses
of racemic and enantiomerically enriched products (PDF). This material
References
(1) Cain, D. In Carbon-Carbon Bond Formation; Augustine, R. L., Ed.;
Marcel Dekker: New York, 1979; Vol. 1, pp 85-250.
(2) For reviews, see: (a) Evans, D. A. In Asymmetric Synthesis; Morrison, J.
D., Ed.; Academic Press: New York, 1983; Vol. 3, Chapter 1, pp 83-
110. (b) Meyers, A. I. In Asymmetric Synthesis; Morrison, J. D., Ed.;
Academic Press: New York, 1983; Vol. 3, Chapter 3, pp 213-274. Also
see: (c) Job, A.; Janeck, C. F.; Bettray, W.; Peters, R.; Enders, D.
Tetrahedron 2002, 58, 2253-2329. (d) Oppolzer, W.; Moretti, R.; Thomi,
S. Tetrahedron Lett. 1989, 30, 5603-5606. (e) Myers, A. G.; Yang, B.
H.; Chen, H.; McKinstry, L.; Kopecky, D. J.; Gleason, J. L. J. Am. Chem.
Soc. 1997, 119, 6496-6511.
(3) For reviews, see: (a) Hayashi, T. In Catalytic Asymmetric Synthesis;
Ojima, I., Ed.; VCH Publishers: New York, 1993. (b) Trost, B. M.; Van
Vranken, D. L. Chem. ReV. 1996, 96, 395-422. For a significant recent
advance, see: (c) Behenna, D. C.; Stoltz, B. M. J. Am. Chem. Soc. 2004,
126, 15044-15045.
(4) (a) Åhman, J.; Wolfe, J. P.; Troutman, M. V.; Palucki, M.; Buchwald, S.
L. J. Am. Chem. Soc. 1998, 120, 1918-1919. (b) Hamada, T.; Chieffi,
A.; Åhman, J.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 1261-
1268.
(5) Chieffi, A.; Kamikawa, K.; Åhman, J.; Fox, J. M.; Buchwald, S. L. Org.
Lett. 2001, 3, 1897-1900.
(6) For a review of asymmetric phase-transfer-catalyzed alkylation, see: (a)
Maruoka, K.; Ooi, T. Chem. ReV. 2003, 103, 3013-3028. Also see: (b)
Dolling, U.-H.; Davis, P.; Grabowski, E. J. J. Am. Chem. Soc. 1984, 106,
446-447. (c) O’Donnell, M. J.; Bennett, W. D.; Wu, S. J. Am. Chem.
Soc. 1989, 111, 2353-2355. (d) Corey, E. J.; Xu, F.; Noe, M. C. J. Am.
Chem. Soc. 1997, 119, 12414-12415. (e) Lygo, B.; Wainwright, P. G.
Tetrahedron Lett. 1997, 38, 8595-8598.
(7) For catalytic alkylation of lithium enolates with oligoamine catalysts,
see: (a) Imai, M.; Hagihara, A.; Kawasaki, H.; Manabe, K.; Koga, K. J.
Am. Chem. Soc. 1994, 116, 8829-8830. (b) Imai, M.; Hagihara, A.;
Kawasaki, H.; Manabe, K.; Koga, K. Tetrahedron 2000, 56, 179-185.
(8) For intramolecular alkylation of aldehydes promoted by a chiral amine
catalyst, see: Vignola, N.; List, B. J. Am. Chem. Soc. 2004, 126, 450-
451.
(9) For a review, see: (a) Douglas, C. J.; Overman, L. E. Proc. Natl. Acad.
Sci. U.S.A. 2004, 101, 5363-5367 and references therein. For catalytic
R-benzylation to form a quaternary center, see: (b) Yamashita, Y.;
Odashima, K.; Koga, K. Tetrahedron Lett. 1999, 40, 2803-2806.
(10) For reviews, see: (a) Martin, S. F. Tetrahedron 1980, 36, 419-460. (b)
Fuji, K. Chem. ReV. 1993, 93, 2037-2066. (c) Corey, E. J.; Guzman-
Perez, A. Angew. Chem., Int. Ed. 1998, 37, 388-401. (d) Christoffers,
J.; Mann, A. Angew. Chem., Int. Ed. 2001, 40, 4591-4597.
(11) For a review, see: Jacobsen, E. N.; Wu, M. H. In ComprehensiVe
Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.;
Springer: Berlin, 1999; Vol. 3, Chapter 35.
(12) Kang, S. H.; Lee, S. B.; Park, C. M. J. Am. Chem. Soc. 2003, 125, 15748-
a Reactions were carried out on a 0.5 mmol scale with external
temperature control (ice bath). b Isolated yield after silica gel chromatog-
raphy. c Determined by chiral GC analysis unless noted otherwise. d De-
termined by chiral HPLC analysis. e Reaction carried out using 2.5 mol %
catalyst. f Reaction carried out using 5.0 mol % catalyst. g Reaction carried
out using 10 mol % catalyst.
15749.
(13) Other enolates examined include trimethyl silyl enol ethers, trichloro silyl
enol ethers, trialkoxy silyl enol ethers, trimethyl silyl ketene acetals,
enamines, and tricyclohexyl boron enolates.
(14) See Supporting Information for details.
(15) For example, in chlorobenzene at -40 °C, 2-benzyl cyclohexanone was
obtained in 83% yield and 53% ee, and 2-allyl cyclohexanone was obtained
in 60% yield and 46% ee.
products,14 a rather striking result given the uniformly high
enantioselectivities obtained in each case. Possible mechanisms
involving enolate activation (via Sn or Cr ate complexes) and/or
alkyl halide activation by the chiral Cr complex are being evaluated
in the context of this intriguing stereochemical phenomenon.
This method provides efficient and highly selective access to
enantioenriched R-carbonyl all-carbon-substituted quaternary
(16) For discussions on the chemoselectivity of tin enolate alkylation, see: (a)
Yasuda, M.; Katoh, Y.; Shibata, I.; Baba, A.; Matsuda, H.; Sonoda, N. J.
Org. Chem. 1994, 59, 4386-4392. (b)Yasuda, M.; Hayashi, K.; Katoh,
Y.; Shibata, I.; Baba, A. J. Am. Chem. Soc. 1998, 120, 715-721. (c)
Yasuda, M.; Tsuji, S.; Shigeyoshi, Y.; Baba, A. J. Am. Chem. Soc. 2002,
124, 7440-7447.
(17) Product 5h could not be accessed by the alternative approach involving
alkylation of 4b with ethyl iodide.
JA043601P
9
J. AM. CHEM. SOC. VOL. 127, NO. 1, 2005 63