F
T. Wezeman et al.
full conversion of the starting material. The DMA was evapo-
rated under reduced pressure or by gently blowing nitrogen into
the flask and the crude was filtered over a short column (SiO2)
with ethyl acetate. Purification of the cyclised product was
performed by flash column chromatography or preparative
thin-layer chromatography (both SiO2, hexanes/ethyl acetate
mixtures).
References
[1] W. Ried, A. Sinharay, Chem. Ber. 1964, 97, 1214. doi:10.1002/CBER.
[2] N. Kaur, D. Kishore, Synth. Commun. 2014, 44, 1375. doi:10.1080/
[3] W. E. Kreighbaum, H. C. Scarborough, J. Med. Chem. 1964, 7, 310.
[4] (a) H. W. Wanzlick, Angew. Chem. Int. Ed. Engl. 1962, 1, 75.
Single-crystal X-ray data for 4a and 7a were collected at
100(2) K on the MX1 beamline of the Australian Synchrotron
with Silicon Double Crystal monochromated radiation
(b) A. J. Arduengo, R. L. Harlow, M. Kline, J. Am. Chem. Soc. 1991,
(c) W. A. Herrmann, M. Elison, J. Fischer, C. Ko¨cher, G. R. J. Artus,
(d) M. Iglesias, D. J. Beetstra, J. C. Knight, L.-L. Ooi, A. Stasch,
S. Coles, L. Male, M. B. Hursthouse, K. J. Cavell, A. Dervisi,
I. A. Fallis, Organometallics 2008, 27, 3279. doi:10.1021/
(e) B. K. Keitz, K. Endo, P. R. Patel, M. B. Herbert, R. H. Grubbs,
(f) M. N. Hopkinson, C. Richter, M. Schedler, F. Glorius, Nature 2014,
[27]
˚
(l 0.7225 A).
The data was collected using BlueIce soft-
ware.[28] Cell refinements and data reductions were carried out
using XDS software.[29] Subsequent computations were carried
out using the WinGX-32 graphical user interface.[30] The struc-
ture was solved by direct methods using SIR97.[31] Data were
refined and extended with SHELXL-14.[32] Non-hydrogen atoms
were refined anisotropically. Carbon-bound hydrogen atoms
were included in idealised positions and refined using a riding
model. Data completeness for 7a is lower than ideal due to the
availability of only a single axis rotation goniometer at the
Australian Synchrotron. The connectivity of the structure is
unambiguous. The refinement residuals are defined as R1 ¼
S||Fo| ꢂ |Fc||/S|Fo| for Fo . 2s(Fo) and wR2 ¼ {S[w(F2o ꢂ Fc2)2]/
S[w(F2c)2]}1/2 where w ¼ 1/[s2(Fo2) þ (AP)2 þ BP], P ¼ (F2o þ
2F2c)/3 and A and B are listed with the crystal data for each
structure. The crystallographic data (in CIF format) have been
deposited at the Cambridge Crystallographic Data Centre with
CCDC 1415528–9. It is available free of charge from the
Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1 EZ, UK; fax: (þ44) 1223-336-033; or email:
(g) S. J. Ryan, L. Candish, D. W. Lupton, Chem. Soc. Rev. 2013, 42,
(h) L. He, H. Guo, Y. Wang, G.-F. Du, B. Dai, Tetrahedron Lett. 2015,
(i) F. Glorius, S. Bellemin-Laponnaz, N-Heterocyclic Carbenes in
Transition Metal Catalysis 2007 (Springer-Verlag: Berlin).
[5] (a) C. C. Scarborough, B. V. Popp, I. A. Guzei, S. S. Stahl, J. Orga-
(b) S. S. Stahl, C. C. Scarborough, U.S. Patent US20060229448A1
2006.
(c) C. C. Scarborough, I. A. Guzei, S. S. Stahl, Dalton Trans. 2009,
(d) C. C. Scarborough, A. Bergant, G. T. Sazama, I. A. Guzei,
L. C. Spencer, S. S. Stahl, Tetrahedron 2009, 65, 5084. doi:10.1016/
(e) M. M. Rogers, J. E. Wendlandt, I. A. Guzei, S. S. Stahl, Org. Lett.
(f) W. Ried, J. Braeutigam, Chem. Ber. 1966, 99, 3304 (and references
Compound 4a: C19H21IN2O2, M 436.28, Triclinic, P (#2),
˚
a 8.3540(17), b 9.985(2), c 11.038(2) A, a 90.10(3)8, b 90.16(3)8,
3
g 99.28(3)8, V 908.7(3) A , Dc 1.595 g cmꢂ3, Z 2, crystal size
˚
0.05 ꢀ 0.05 ꢀ 0.05 mm3, block, temperature 100(2) K, l(Syn-
˚
chrotron) 0.7225 A, 2ymax ¼ 50.34, hkl range ꢂ9 to 9, ꢂ11
to 11, ꢂ12 to 12, N 10895, Nind 2835 (Rmerge 0.024), Nobs 2761
(I . 2s(I)), Nvar 221, residuals R1(F, 2s) ¼ 0.026, wR2(F2, all)
¼ 0.071, A ¼ 0.05, B ¼ 1, GoF(all) 1.053, Drmin,max ꢂ0.911,
therein).
(g) Enantioselective catalysis is also performed with 5NHC deriva-
tives; for an example, see: L. Candish, C. M. Forsyth, D. W. Lupton,
[6] Y. Yuan, L. Bai, J. Nan, J. Liu, X. Luan, Org. Lett. 2014, 16, 4316.
ꢂ3
˚
0.772 e A
.
Compound 7a: C19H20N2O2, M 308.37, Triclinic, P (#2),
˚
a 9.280(2), b 9.500(2), c 9.630(2) A, a 79.39(3)8, b 75.05(3)8,
3
g 80.83(3)8, V 800.6(3) A , Dc 1.279 g cmꢂ3, Z 2, crystal size
˚
0.05 ꢀ 0.05 ꢀ 0.05 mm3, block, temperature 100(2) K, l(Syn-
[7] R. Mirabdolbaghi, M. Hassan, T. Dudding, Tetrahedron Asymmetry
[8] (a) S. Kumar, R. Pratap, A. Kumar, B. Kumar, V. Tandon, V. Ram,
(b) R. J. W. Le Fevre, J. Chem. Soc. 1929, 733. doi:10.1039/
[9] K. Matsuda, I. Yanagisawa, Y. Isomura, T. Mase, T. Shibanuma,
[10] (a) W. Ried, W. Storbeck, Chem. Ber. 1962, 95, 459. doi:10.1002/
˚
chrotron) 0.7225 A, 2ymax 56.84, hkl range ꢂ12 to 12, ꢂ12
to 12, ꢂ12 to 12, N 26996, Nind 3812 (Rmerge 0.021), Nobs 3585
(I . 2s(I)), Nvar 212, residuals R1(F, 2s) ¼ 0.040, wR2(F2,
all) ¼ 0.105, A ¼ 0.05, B ¼ 0.35, GoF(all) 1.066, Drmin,max
ꢂ3
˚
ꢂ0.237, 0.320 e A
.
Supplementary Material
Experimental details and 1H and 13C NMR spectra for all novel
compounds reported are available on the Journal’s website.
(b) W. Ried, A. Sinharay, Chem. Ber. 1965, 98, 3523. doi:10.1002/
(c) M. Alajar´ın, P. Molina, P. Sa´nchez-Andrada, M. Concepcio´n
[11] (a) Y. Du, S. Shang, K. Zhao, China Patent CN103601689A 2014.
(b) A. I. Roshchin, R. G. Kostyanovsky, Mendeleev Commun. 2003,
(c) M. R. Ibrahim, Z. A. Fataftah, O. A. Hamed, J. Chem. Eng. Data
Acknowledgements
S. B. acknowledges funding through the DFG (BR 1750) and Helmholtz
Association. K.-S. M. acknowledges a QUT Vice Chancellor’s Research
Fellowship; Y. H. thanks the Chinese Science Council (CSC) for a fellow-
ship, T. W. acknowledges the Marie-Curie ITN ECHONET (grant no.
316379). The authors thank the Australian Synchrotron for access to the
MX1 beamline used to collect single crystal X-ray data. This collaboration is
supported by the ATN-DAAD Joint Research Co-operation Scheme.
(d) S. Kumar, R. Pratap, A. Kumar, B. Kumar, V. K. Tandon, V. J.