ORGANIC
LETTERS
2003
Vol. 5, No. 7
1059-1061
Highly anti-Selective SN2′ Substitutions
of Chiral Cyclic 2-Iodo-Allylic Alcohol
Derivatives with Mixed Zinc−Copper
Reagents
M. Isabel Calaza, Eike Hupe, and Paul Knochel*
Department Chemie, Ludwig-Maximilians-UniVersita¨t, Butenandtstrasse 5-13,
81377 Mu¨nchen, Germany
Received January 16, 2003
ABSTRACT
Functionalized allylic electrophilic reagents such as chiral 2-iodo-1-cyclohexenyl and -cyclopentenyl phosphates undergo highly stereoselective
anti-SN2′-allylic substitution reactions with a wide range of organozinc reagents (R Zn and RZnI) leading to chiral products with a transfer of
2
the chiral information >95%. The use of functionalized organozinc iodides allows preparation of the bicyclic enones 8 and 9 in g93% ee.
Functionalized allylic electrophiles are useful multicoupling
reagents1 for the expeditive formation of carbon-carbon
bonds in a selective way. A variety of organometallic
compounds undergo nucleophilic substitutions on allylic
systems. Especially interesting are organocopper compounds2
which are known to undergo SN2′ substitutions with various
allylic electrophiles with high anti-selectivity.3,4 Although
catalytic allylic substitutions have also been reported,5 the
transfer of chirality with use of chiral allylic precursors has
the advantage of being highly predictable. The required
allylic alcohols are readily available by a range of asymmetric
syntheses.6,7 In the allylation reactions zinc-based organo-
coppers show high SN2′ selectivities.8,9 Herein, we wish to
report a highly anti-SN2′ substitution of chiral 2-iodo-
(4) (a) Belelie, J. L.; Chong, J. M. J. Org. Chem. 2001, 66, 5552. (b)
Ibuka, T.; Habashita, H.; Otaka, A.; Fujii, N.; Oguchi, Y.; Uyehara, T.;
Yamamoto, Y. J. Org. Chem. 1991, 56, 4370. (c) Marino, J. P.; Viso, A.;
Lee, J.-D.; Fernandez de la Pradilla, R.; Fernandez, P.; Rubio, M. B. J.
Org. Chem. 1997, 62, 645. (d) Smitrovich, J. H.; Woerpel, K. A. J. Org.
Chem. 2000, 65, 1601. (e) Spino, C.; Beaulieu, C. J. Am. Chem. Soc. 1998,
120, 11832. (f) Spino, C.; Beaulieu, C. Angew. Chem. 2000, 112, 2006;
Angew. Chem., Int. Ed. 2000, 39, 1930. (g) Spino, C.; Beaulieu, C.;
Lafreniere, J. J. Org. Chem. 2000, 65, 7091. (h) Denmark, S. E.; Marble,
L. K. J. Org. Chem. 1990, 55, 1984. (i) Fleming, I.; Winter, S. B. D.
Tetrahedron Lett. 1995, 36, 1733.
(5) (a) van Klaveren, M.; Persson, E. S. M.; del Villar, A.; Grove, D.
M.; Ba¨ckvall, J.-E.; van Koten, G. Tetrahedron Lett. 1995, 36, 3059. (b)
Karlstro¨m, A. S. E.; Huerta, F. F.; Meuzelaar, G. J.; Ba¨ckvall, J.-E. Synlett
2001, 923. (c) Meuzelaar, G. J.; Karlstro¨m, A. S. E.; van Klaveren, M.;
Persson, E. S. M.; del Villar, A.; van Koten, G.; Ba¨ckvall, J.-E. Tetrahedron
2000, 56, 2895. (d) Du¨bner, F.; Knochel, P. Angew. Chem. 1999, 111, 391;
Angew. Chem., Int. Ed. 1999, 38, 379. (e) Du¨bner, F.; Knochel, P.
Tetrahedron Lett. 2000, 41, 9233. (f) Alexakis, A.; Malan, C.; Lea, L.;
Benhaim, C.; Fournioux, X. Synlett 2001, 927. (g) Alexakis, A.; Croset, K.
Org. Lett. 2002, 4, 4147. (h) Malda, H.; van Zijl, A. W.; Arnold, L. A.;
Feringa, B. L. Org. Lett. 2001, 3, 1169. (i) Luchaco-Cullis, C. A.; Mizutani,
H.; Murphy, K. E.; Hoveyda, A. H. Angew. Chem. 2001, 113, 1504; Angew.
Chem., Int. Ed. 2001, 40, 1456.
(1) For the use of multicoupling reagents see: (a) Seebach, D.; Knochel,
P. HelV. Chim. Acta 1984, 67, 261. (b) Knochel, P.; Normant, J. F.
Tetrahedron Lett. 1985, 26, 425. (c) Knochel, P.; Normant, J. F. Tetrahedron
Lett. 1986, 27, 1043. (d) Chen, H. G.; Gage, J. L.; Barret, S. D.; Knochel,
P. Tetrahedron Lett. 1990, 31, 1829. (e) Rao, S. A.; Knochel, P. J. Org.
Chem. 1991, 56, 4591. (f) Rottla¨nder, M.; Palmer, N.; Knochel, P. Synlett
1996, 573.
(2) (a) Lipshutz, B. H.; Sengupta, S. Org. React. 1992, 41, 135. (b)
Modern Organocopper Chemistry; Krause, N., Ed.; Wiley-VCH: Weinheim,
Germany, 2002.
(3) (a) Goering, H. L.; Singleton, V. D., Jr. J. Am. Chem. Soc. 1976, 98,
7854. (b) Goering, H. L.; Singleton, V. D., Jr. J. Org. Chem. 1983, 48,
1531. (c) Ibuka, T.; Nakao, T.; Nishii, S.; Yamamoto, Y. J. Am. Chem.
Soc. 1986, 108, 7420. (d) Ibuka, T.; Tanaka, M.; Nishii, S.; Yamamoto, Y.
J. Am. Chem. Soc. 1989, 111, 4864. (e) Karlstro¨m, A. S. E.; Ba¨ckvall, J.-
E. In Modern Organocopper Chemistry; Krause, N., Ed.; Wiley-VCH:
Weinheim, Germany, 2002; p 259. (f) Arai, M.; Kawasuji, T.; Nakamura,
E. J. Org. Chem. 1993, 58, 5121. (g) Breit, B.; Demel, P. AdV. Synth. Catal.
2001, 343, 429.
(6) For the asymmetric reduction with the CBS -method, see: (a) Corey,
E. J.; Helal, C. J. Angew. Chem., Int. Ed. 1998, 37, 1986. (b) Wallbaum,
S.; Martens, J. Tetrahedron: Asymmetry 1992, 3, 1475.
10.1021/ol0340742 CCC: $25.00 © 2003 American Chemical Society
Published on Web 03/12/2003