B to date and Yonemitsu6 and Salomon7 have each published
subunit syntheses. We have completed the synthesis of the
C1-C14,8 C14-C21,9 and C37-C5410 subunits, and in this
Letter we describe a route to the remaining C22-C3611
subunit of halichondrin B.
Our approach to this structurally complex natural product
has been to utilize both subunit convergence and imbedded
symmetry elements to significantly simplify the subunit
syntheses. The retrosynthesis (Scheme 1) of this G,H,I-ring
local meso-symmetry about C28, extending from C25
through C31, which would allow substrate-controlled, two-
directional synthesis. However, because C23 and C33 have
the same configuration, as do C24 and C32, reagent-con-
trolled introduction of these stereocenters in 3 via two-
directional synthesis was indicated. The construction of the
G- and H-rings in 3 was anticipated based on earlier success
with Pd(0)-mediated asymmetric double cycloetherification,13
leaving intermediate 4 to serve as the cyclization substrate.
Our previous efforts toward the G,H-ring system revealed
that introduction of the C32 oxygen functionality could not
be accomplished on the dihydropyran H-ring.14 Therefore,
the C32 hydroxyl would have to be installed prior to ring
formation to avoid this difficulty. Chiral cyclization precursor
4 could be obtained from meso-symmetric 5 after two-
directional chain extension, Sharpless asymmetric epoxida-
tion (SAE)15 to install the C24 and C32 oxygen functionalites,
and further two-directional chain extension. Finally, diol 5
could be formed from cis-4-cyclopentene-1,3-diol 616 through
two-directional elaboration.
Scheme 1. Retrosynthesis
The synthesis began with the known bis-silyl protected
cyclopentenediol (7),17 which was oxidatively cleaved and
exposed to the Still-Gennari18 reagent 8 to give the Z,Z-
diester 9 in good yield (Scheme 2). Reduction of the diester
Scheme 2
system (1) begins with the disconnection of the I-ring at C34
and differentiation of C23 and C33 vinyl groups to give 2.
It was envisioned that the C19 and C26 exo-methylenes in
halichondrin B could be introduced simultaneously at a late
stage in the synthesis in order to increase efficiency. It was
anticipated that imposing a full measure of stereochemical
and functional group symmetry, as in 3, would optimize a
two-directional synthesis strategy.12 Note that in 3 there is
(4) Synthesis of subunits: (a) Namba, K.; Jun, H.-S.; Kishi, Y. J. Am.
Chem. Soc. 2004, 126, 7770. (b) Choi, H.; Demeke, D.; Kang, F.-A.; Kishi,
Y.; Nakajima, K.; Nowak, P.; Wan, Z.-K.; Xie, C. Pure Appl. Chem. 2003,
75, 1 and references therein.
(5) Total synthesis of halichondrin B: Aicher, T. D.; Buszek, K. R.;
Fang, F. G.; Forsyth, C. J.; Jung, S. H.; Kishi, Y.; Matelich, M. C.; Scola,
P. M.; Spero, D. M.; Yoon, S. K. J. Am. Chem. Soc. 1992, 114, 3162.
(6) Horita, K.; Nishibe, S.; Yonemitsu, O. Phytochem. Phytopharm. 2000,
386 and references therein.
(7) Cooper, A. J.; Pan, W.; Salomon, R. G. Tetrahedron Lett. 1993, 34,
8193 and references therein.
with DIBAL gave the bis(allylic alcohol) 10 in 83% overall
yield from 7. Hydroboration with BH3‚THF occurred selec-
tively according to Kishi’s empirical rule,19 establishing
(8) (a) Lambert, W. T.; Burke, S. D. Org. Lett. 2003, 5, 515. (b) Burke,
S. D.; Jung, K. W.; Lambert, W. T.; Phillips, J. R.; Kloving, J. J. J. Org.
Chem. 2000, 65, 4070. (c) Burke, S. D.; Phillips, J. R.; Quinn, K. J.; Zhang,
G.; Jung, K. W.; Buchanan, J. L.; Perri, R. E. In Anti-InfectiVes: Recent
AdVances in Chemistry and Structure-ActiVity Relationships; Bentley, P.
H., O’Hanlon, P. J., Eds.; The Royal Society of Chemistry: Cambridge,
1997; p 73. (d) Burke, S. D.; Jung, K. W.; Phillips, J. R.; Perri, R. E.
Tetrahedron Lett. 1994, 35, 703.
(9) (a) Jiang, L.; Martinelli, J. R.; Burke, S. D. J. Org. Chem. 2003, 68,
1150. (b) Jiang, L.; Burke, S. D. Org. Lett. 2002, 4, 3411.
(10) (a) Austad, B. C.; Hart, A. C.; Burke, S. D. Tetrahedron 2002, 58,
2011. (b) Burke, S. D.; Austad, B. C.; Hart, A. C. J. Org. Chem. 1998, 63,
6770.
(12) (a) Magnuson, S. R. Tetrahedron 1995, 51, 2167. (b) Poss, C. S.;
Schreiber, S. L. Acc. Chem. Res. 1994, 27, 9.
(13) (a) Lucas, B. S.; Burke, S. D. Org. Lett. 2003, 5, 3915. (b) Burke,
S. D.; Jiang, L. Org. Lett. 2001, 3, 1953.
(14) Quinn, K. J. Ph.D. Thesis, University of Wisconsin-Madison, 2000.
(15) (a) Gao, Y.; Hanson, R. M.; Klunder, J. M.; Ko, S. Y.; Masamune,
H.; Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765. (b) Katsuki, T.;
Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974.
(16) Kaneko, C.; Sugimoto, A.; Tanaka, S. Synthesis 1974, 876.
(17) Theil, F.; Schick, H.; Winter, G.; Reck, G. Tetrahedron 1991, 47,
7569.
(11) (a) Burke, S. D.; Quinn, K. J.; Chen, V. J. J. Org. Chem. 1998, 63,
8626. (b) Burke, S. D.; Zhang, G.; Buchanan, J. L. Tetrahedron Lett. 1995,
36, 7023. (c) Burke, S. D.; Buchanan, J. L.; Rovin, J. D. Tetrahedron Lett.
1991, 32, 3961.
(18) Still, W. C.; Gennari, C. Tetrahedron Lett. 1983, 24, 4405.
738
Org. Lett., Vol. 7, No. 4, 2005