J. S. Yadav et al. / Tetrahedron Letters 46 (2005) 2133–2136
2135
2 and 3 in 82–86% yields. The spectroscopic (1H NMR,
13C NMR, IR, mass) and physical data15 (specific rota-
tions and melting points) of all the lactones were in
good agreement with those reported.11,12
9. (a) Endo, J. A. J. Med. Chem. 1985, 28, 401–405; (b)
Honda, T. J. Chem. Soc., Perkin Trans. 1 1990, 1733–
1737; (c) Argoudelis, A. D.; Zieserl, J. F. Tetrahedron Lett.
1966, 18, 1969–1973; (d) Cavil, G. W. K.; Clark, D. V.;
Whitefield, F. B. Aust. J. Chem. 1968, 21, 2819–2823; (e)
Laurence, B. R. J. Chem. Soc., Chem. Commun. 1982, 59.
10. (a) Sato, M.; Nakashima, H.; Keisuke, H.; Hayashi, M.;
Honzumi, M.; Taniguchi, T.; Ogasawara, K. Tetrahedron
Lett. 2001, 42, 2833–2837; (b) Wilkinson, A. L.; Hanefeld,
U.; Wilkinson, B.; Leadlay, P. F.; Staunton, J. Tetra-
hedron Lett. 1998, 39, 9827–9830; (c) Hinterding, K.;
Singhanat, S.; Oberer, L. Tetrahedron Lett. 2001, 42,
8463–8465; (d) Wu, Y.; Shen, X.; Tang, C.-J.; Chen, Z. L.;
Hu, Q.; Shi, W. J. Org. Chem. 2002, 11, 3802–3810.
11. For the synthesis of prelactone B, see (a) Yadav, J. S.;
Reddy, K. B.; Sabitha, G. Tetrahedron Lett. 2004, 45,
6475–6476; (b) Aggarwal, V. K.; Bae, I.; Lee, H.-Y.
Tetrahedron 2004, 60, 9725–9733; (c) Dias, L. C.; Steil, L.
J.; Vasconcelos, V. de A. Tetrahedron: Asymmetry 2004,
15, 147–150; (d) Pihko, P. M.; Erkkila, A. Tetrahedron
Lett. 2003, 44, 7607–7609; (e) Chakraborty, T. K.;
Tapadar, S. Tetrahedron Lett. 2003, 44, 2541–2543; (f)
Fournier, L.; Gaudel-sin, A.; Kocienski, P. J.; Pons, J.-M.
Synlett 2003, 107–111; (g) Csak, A. G.; Mba, M.; Plumet,
J. Synlett 2003, 2092–2094; (h) Enders, D.; Haas, M.
Synlett 2003, 2182–2184; (i) Hanefeld, U.; Hooper, A. M.;
Staunton, J. Synthesis 1999, 38, 401–403.
In conclusion, a flexible and efficient approach to the
asymmetric synthesis of triketide d-lactones such as
(+)-prelactones B, C and V has been described involving
Prins cyclisation as the key step. A variety of functional-
ised chains can be installed at C-3, C-5 and C-6 of the
lactones. Further applications of the methodology in
the synthesis of several complicated chiral intermediates
for polyketide synthesis are in progress and the results
will be published in due course.
Acknowledgements
M.S.R. thanks CSIR, New Delhi for the award of
fellowship.
References and notes
1. (a) Barry, C. St. J.; Crosby, S. R.; Harding, J. R.; Hughes,
R. A.; King, C. D.; Parker, G. D.; Willis, C. L. Org. Lett.
2003, 5, 2429–2432; (b) Yang, X.-F.; Mague, J. T.; Li,
C.-J. J. Org. Chem. 2001, 66, 739–747; (c) Yadav, J. S.;
Reddy, B. V. S.; Sekhar, K. C.; Gunasekar, D. Synthesis
2001, 6, 885–888; (d) Yadav, J. S.; Reddy, B. V. S.; Reddy,
M. S.; Niranjan, N. J. Mol. Catal. A: Chem. 2004, 210, 99–
103; (e) Yadav, J. S.; Reddy, B. V. S.; Reddy, M. S.;
Niranjan, N.; Prasad, A. R. Eur. J. Org. Chem. 2003,
1779–1783.
2. See for example: (a) Zhang, W.-C.; Viswanathan, G. S.;
Li, C. J. Chem. Commun. 1999, 291–292; (b) Semeyn, C.;
Blaauw, R. H.; Speckamp, W. N. J. Org. Chem. 1997, 62,
3426–3427; (c) Loh, T.-P.; Hu, Q.-Y.; Ma, L.-T. J. Am.
Chem. Soc. 2001, 123, 2450–2451; (d) Hu, Y.; Skalitzky,
D. J.; Rychnovsky, S. D. Tetrahedron Lett. 1996, 37,
8679–8682.
3. See for example: (a) Dahanukar, V. H.; Rychnovsky, S. D.
J. Org. Chem. 1996, 61, 8317–8320; (b) Kopecky, D. J.;
Rychnovsky, S. D. J. Org. Chem. 2000, 65, 191–198.
4. (a) Jaber, J. J.; Mitsui, K.; Rychnovsky, S. D. J. Org.
Chem. 2001, 66, 4679–4686; (b) Crosby, S. R.; Harding,
J. R.; King, C. D.; Parker, G. D.; Willis, C. L. Org. Lett.
2002, 20, 3407–3410.
5. Al-Mutairi, E. H.; Crosby, S. R.; Darzi, J.; Harding, J. R.;
Hughes, R. A.; King, C. D.; Simpson, T. J.; Smith, R. W.;
Willis, C. L. Chem. Commun. 2001, 835–836.
6. (a) Rychnovsky, S. D.; Thomas, C. R. Org. Lett. 2000, 2,
1217–1219; (b) Rychnovsky, S. D.; Yang, G.; Hu, Y.;
Khire, U. R. J. Org. Chem. 1997, 62, 3022–3023; (c)
Kopecky, D. J.; Rychnoysky, S. D. J. Am. Chem. Soc.
2001, 123, 8420–8422.
7. (a) Cortes, J.; Wiesman, K. E. H.; Roberts, G. A.; Brown,
M. J. B.; Staunton, J.; Leadlay, P. F. Science 1995, 268,
1487–1489; (b) Kao, C. M.; Luo, G.; Katz, L.; Cane, D.
E.; Khosla, C. J. Am. Chem. Soc. 1994, 116, 11612–11613;
(c) Bindseil, K. U.; Zeeck, A. Helv. Chim. Acta 1993, 76,
150–157; (d) Gerlitz, M.; Hammann, P.; Thiericke, R.;
Rohr, J. J. Org. Chem. 1992, 57, 4030–4033.
12. For the synthesis of prelactone C, see (a) Yamashita, Y.;
Saito, S.; Ishitani, H.; Kobayashi, S. J. Am. Chem. Soc.
2003, 125, 3793–3798; (b) Chakraborty, T. K.; Tapadar, S.
Tetrahedron Lett. 2001, 42, 1375–1377; (c) Esumi, T.;
Fukuyama, H.; Oribe, R.; Kawazoe, K.; Iwabuchi, Y.;
Irie, H.; Hatakeyama, S. Tetrahedron Lett. 1997, 38, 4823–
4826.
13. Furrow, M. E.; Schaus, S. E.; Jacobsen, E. N. J. Org.
Chem. 1998, 68, 6776–6777.
14. (a) Baskaran, S.; Chandrasekaran, S. Tetrahedron Lett.
1990, 31, 2775–2778; (b) Ali, S. M.; Ramesh, K.; Borc-
hardt, R. T. Tetrahedron Lett. 1990, 31, 1509–1512.
15. Selected physical data for compound 1. Rf = 0.45 (silica,
20
60% EtOAc in petroleum ether); ½aꢁD +36.8 (c 0.72,
MeOH); mp 97–98 °C; IR (KBr): mmax 3475, 2969, 2925,
;
1718, 1465, 1274, 1004 cmꢀ1 1H NMR (200 MHz,
CDCl3): d 3.72 (m, 2H), 2.89 (dd, J = 17.6, 5.9 Hz, 1H),
2.52 (br s, OH, 1H), 2.48 (dd, J = 17.8, 8.0 Hz, 1H), 1.98
(m, 1H), 1.76 (ddq, J = 10.0, 7.0, 6.1 Hz, 1H), 1.12 (d,
J = 6.0 Hz, 3H), 1.08 (d, J = 6.0 Hz, 3H), 0.92 (d,
J = 6.5 Hz, 3H); 13C NMR (75 MHz, CDCl3): d 171.33,
86.38, 69.65, 38.96, 38.89, 28.89, 19.94, 14.04, 13.60;
EIMS: m/z (%) 129 (M+ꢀC3H7, 25), 111 (23), 87 (28), 58
(55), 43 (100). Anal. Calcd for C9H16O3 (172.22): C, 62.77;
H, 9.36%. Found: C, 62.84; H, 9.41%. Compound 2.
20
Rf = 0.5 (silica, 70% EtOAc in petroleum ether); ½aꢁD
+54.4 (c 0.76, MeOH); IR (neat): mmax 3400, 2925, 1730,
1225 cmꢀ1 1H NMR (200 MHz, CDCl3): d 5.79 (ddq,
;
J = 15.2, 6.6, 1.0 Hz, 1H), 5.43 (ddq, J = 15.2, 8.2, 2.0 Hz,
1H), 4.17 (dd, J = 10.4, 8.2 Hz, 1H), 3.74 (ddd, J = 8.0,
7.0, 5.8 Hz, 1h), 3.07 (br s, OH, 1H), 2.87 (dd, J = 17.0,
5.8 Hz, 1H), 2.46 (dd, J = 17.0, 8.0 Hz, 1H), 1.77 (dd,
J = 6.6, 2.0 Hz, 3H), 1.64 (ddq, J = 10.4, 7.0, 6.8 Hz, 1H),
1.02 (d, J = 6.8 Hz, 3H); 13C NMR (75 MHz, CDCl3): d
170.34, 132.41, 127.61, 84.11, 69.53, 41.49, 39.08, 17.62,
13.66; EIMS: m/z (%) 152 (M+ꢀH2O, 14), 109 (10), 82
(40), 71 (100), 58 (31), 43 (53). Anal. Calcd for C9H14O3
(170.20): C, 63.51; H, 8.29%. Found: C, 63.46; H, 8.31%.
Compound 3. Rf = 0.4 (silica, 60% EtOAc in petroleum
25
8. Khosla, C.; Gokhale, R. S.; Jacobsen, J. R.; Cane, D. E.
Ann. Rev. Biochem. 1999, 68, 219–253, and references cited
therein.
ether); ½aꢁD +32.8 (c 0.98, MeOH); mp 46 °C; IR (KBr):
mmax 3435, 2980, 2932, 1730, 1383, 1267, 1095, 1046,
979 cmꢀ1 1H NMR (200 MHz, CDCl3): d 3.93 (dt,
;