Scheme 4
Figure 2. Stereochemical models 13 and 14,
In addition, failed attempts at ring expansion were also
experienced with nonstabilized carbenoids,19 ethyl diazo-
lithioacetate,20 and silyloxycyclopropane homologation.21
Considering ring expansion of 1,3-dicarbonyl functions are
prevalent, for example, Beckwith-Dowd22 and variant23
protocols, 11 was converted to 15 in 81% overall yield, via
Mander’s reagent24 and subsequent treatment with ethoxide
(retro Claisen/Claisen reaction). A requirement of the Beck-
with-Dowd protocol is the installation of a methylene halide
function, however, all attempts to convert 15 to the methylene
iodide 17 or bromide 18 failed when 15 was reacted directly
with diiodo- or dibromomethane. Reaction of 15 with
formalin25 gave the methylene hydroxy derivative 19 in 84%
yield, which underwent smooth conversion to the methylene
iodide 17 in 75% yield, using triphenylphosphine, iodine and
imidazole. Unfortunately, treating iodide 17 with samarium
diiodide26 afforded separable mixtures of cyclopropanol 16
(72%) and unidentified products, whereas recent develop-
ments with zinc metal27 promoted ring expansion returned
only starting material (Scheme 4). Surprisingly, brief attempts
(e.g., DBU, NaOEt) to ring open 16 have been disappointing.
Thanks to the ingenious Zercher reaction,28 however,
treating 15 with diethyl zinc and diiodomethane gave in one
step the vibsanin E core 2029 in 50% yield (dr >95:5)
(Scheme 5).
Scheme 5
In conclusion, we have demonstrated that the core of
vibsanin E (1) can be constructed expediently and astonish-
ingly without the use of a single protecting group. We believe
that new developments in asymmetric 1,4-additions to
cyclohexenones30 in conjunction with the El Ga¨ıed Baylis-
Hillman variant and the remarkable Zercher reaction will
pave the way for a successful total synthesis and structural
confirmation of vibsanin E (1).
(19) Maruoka, K.; Concepcion, A. B.; Yamamoto, H. Synthesis 1994,
1283-1290.
(20) Nagao, K.; Chiba, M.; Kim, S.-W. Synthesis 1983, 197-199.
(21) (a) Yoshihiko, I.; Fujii, S.; Saegusa, T. J. Org. Chem. 1976, 41,
2073-2074. (b) Patel, H. A.; Stothers, J. B.; Thomas, S. E. Can. J. Chem.
1994, 72, 56-68.
(22) (a) Beckwith, A. L. J.; O’Shea, D. M.; Gerba, S.; Westwood, S. W.
J. Chem. Soc., Chem. Commun. 1987, 666-667. (b) Beckwith, A. L. J.;
O’Shea, D. M.; Westwood, S. W. J. Am. Chem. Soc. 1988, 110, 2565-
2575. (c) Dowd, P.; Zhang, W. Chem. ReV. 1993, 93, 2091-2115.
(23) Sugi, M.; Sakuma, D.; Togo, H. J. Org. Chem. 2003, 68, 7629-
7633 and references therein.
(24) Mander, L. N.; Sethi, S. P. Tetrahedron Lett. 1983, 24, 5425-5428.
(25) (a) Tsuda, Y.; Ishiura, A.; Takamura, S.; Hosoi, S.; Isobe, K.; Mohri,
K. Chem. Pharm. Bull. 1991, 39, 2797-2802. (b) Tsuji, J.; Nisar, M.;
Shimizu, I. J. Org. Chem. 1985, 50, 3416-3417.
(26) (a) Takano, M.; Umino, A.; Hakada, M. Org. Lett. 2004, 6, 4897-
4900. (b) Chung, S. H.; Cho, M. S.; Choi, J. Y.; Kwon, D. W.; Kim, Y. H.
Synlett 2001, 1266-1268. (c) Hasegawa, E.; Kitazume, T.; Suzuki, K.;
Tosaka, E. Tetrahedron Lett. 1998, 39, 4059-4062.
(27) Sugi, M.; Sakuma, D.; Togo, H. J. Org. Chem. 2003, 68, 7629-
7633.
Acknowledgment. We thank The University of Queens-
land for financial support and Dr. D. J. Brecknell for
molecular mechanics calculations.
Supporting Information Available: Characterization
data of compounds 8-11, 15, and 20, X-ray crystal structure
analysis data of 11, and copies of 1H and 13C NMR sprectra
of compound 20. This material is available free of charge
OL0501222
(29) The stereochemistry at C2 has not been assigned, but molecular
mechanics calculations suggest the lowest energy arrangement is where C2
has the ester function â.
(30) Feringa, B. L.; Badorrey, R.; Pe´na, D.; Harutyunyan, S. R.;
Minnaard, A. J. Proc. Nat. Acad. Sci. U.S.A. 2004, 101, 5834-5838.
(28) Brogan, J. B.; Zercher, C. K. J. Org. Chem. 1997, 62, 6444-6446.
Org. Lett., Vol. 7, No. 7, 2005
1329