6176 Journal of Medicinal Chemistry, 2005, Vol. 48, No. 20
Letters
Table 3. Metabolic and Toxicity Assay Data for 10c
assay type
References
(1) Murray, J. J.; Tonnel, A. B.; Brash, A. R.; Roberts, L. J.; Gosset,
P.; Workman, R.; Capron, A.; Oates, J. A. Release of prostag-
landin D2 into human airways during acute antigen challenge.
N. Engl. J. Med. 1986, 315, 800-804.
cytochrome P450 inhibition (µM)a
3A4 (ketoconazole)
2D6 (quinidine)
>50
>50
>50
>50
>50
(2) (a) Hardy, C. C.; Robinson, C.; Tattersfield, A. E.; Holgate, S. T.
The bronchoconstrictor effect of inhaled prostaglandin D2 in
normal and asthmatic men. N. Engl. J. Med. 1984, 311, 209-
213. (b) Sampson, S. E.; Sampson, A. P.; Costello, J. F. Effect of
inhaled prostaglandin D2 in normal and atopic subjects, and of
pre-treatment with leukotriene D4. Thorax 1997, 52, 513-518.
(3) (a) Emery, D. L.; Djokic, T. D.; Graf, P. D.; Nadel, J. A.
Prostaglandin D2 causes accumulation of eosinophils in the
lumen of the dog trachea. J. Appl. Physiol. 1989, 67, 959-962.
(b) Shiraishi, Y.; Asano, K.; Nakajima, T.; Oguma, T.; Suzuki,
Y.; Shiomi, T.; Sayama, K.; Niimi, K.; Wakaki, M.; Kagyo, J.;
Ikeda, E.; Hirai, H.; Yamaguchi, K.; Ishizaka, A. Prostaglandin
D2 induced eosinophilic airway inflammation is mediated by
CRTH2 receptor. J. Pharmacol. Exp. Ther. 2005, 312 (3), 954-
960.
2C9 (sulfaphenazole)
2C19 (tranylcypromine)
1A2 (furafylline)
cytochrome P450 induction (% at 1 µM)b
3A4 (midazolam)
-8 ( 18
-7 ( 11
-18 ( 9
1A (ethoxyresorufin)
2C9 (tolbutamide)
microsomal stability t1/2 (min)
human
>60
>60
>50
>50
rat
hERG block (µM)
HepG2 cytotoxicity (µM)c
a Using the fluorogenic substrates with standard inhibitors
stated in the table. b Comparison of turnover of standard sub-
strates stated in the table compared to 50 µM positive control of
dexamethasone (CYP3A4), omeprazole (CYP1A), and rifampicin
(CYP2C9). c Viability reading using the Alamar Blue redox tracer.
(4) Fujitani, Y.; Kanaoka, Y.; Aritake, K.; Uodome, N.; Okazaki-
Hatake, K.; Urade, Y. Pronounced eosinophilic lung inflamma-
tion and the TH2 cytokine release in human lipocalin-type
prostaglandin D synthase transgenic mice. J. Immunol. 2002,
168, 443-449.
(5) (a) Hirai, H.; Tanaka, K.; Yoshie, O.; Ogawa, K.; Kenmotsu, K.;
Takamori, Y.; Ichimasa, M.; Sugamura, K.; Nakamura, M.;
Takano, S.; Nagata, K. Prostagalndin D2 selectivity induces
chemotaxis in T helper type 2 cells, eosinophils and basophils
via seven-transmembrane receptor CRTH2. J. Exp. Med. 2001,
193, 255-262. (b) Ogawa, K.; Tanaka, K.; Nagata, K.; Takano,
S. Protein specific to human Th2, gene (B19) encoding the same,
and transformant, recombinant vector and monoclonal antibody
relating thereto. European Patent 0851030, 1998. (c) Hirai, H.;
Nagata, K.; Ogawa, K.; Takano, S. Method of identifying
properties of substance to prostaglandin D receptors. European
Patent 1211513, 2002. (d) Bauer, P. H.; Neote, K. S.; Ceng, J.
B.; Li, B.; Zhang, J.; Gladue, R. P. Methods for the identification
of compounds useful for the treatment of disease states mediated
by prostaglandin D2. European Patent 1170594, 2002. (e)
Shichijo, M.; Sugimoto, H.; Nagao, K.; Inbe, H.; Encinas, J. A.;
Takeshita, K.; Bacon, K. B.; Gantner, F. Chemoattractant
receptor-homologous molecule expressed on Th2 cells activation
in vivo increases blood leukocyte counts and its blockade
abrogates 13,14-dihydro-15-keto-prostaglandin D2-indiced eosi-
nophilia in rats. J. Pharmacol. Exp. Ther. 2003, 307 (2), 518-
525. (f) Huang, J.-L.; Gao, P.-S.; Mathias, R. A.; Yao, T.-C.; Chen,
L.-C.; Kuo, M.-L.; Hsu, S.-C.; Plunkett, B.; Togias, A.; Barnes,
K. C.; Stellato, C.; Beaty, T. H.; Huang, S.-K. Sequence variants
of the gene encoding chemoattractant receptor expressed on Th2
cells (CRTH2) are associated with asthma and differentially
influence mRNA stability. Hum. Mol. Genet. 2004, 13 (21),
2691-2697. (g) Spik, I.; Brenuchon, C.; Angeli, V.; Staumont,
D.; Fleury, S.; Capron, M.; Trottein, F.; Dombrowicz, D. Activa-
tion of the prostaglandin D2 receptor DP2/CRTH2 increases
allergic inflammation in mouse. J. Immunol. 2005, 174 (6),
3703-3708. (h) Nakamura, M.; Sugamura, K.; Takano, S.;
Nagata, K.; Hirai, H. CRTH2-knockout mice as animal model
of allergic disorders. U.S. Patent Application 2005/0144662,
2005. (i) Almishri, W.; Cossette, C.; Rokach, J.; Martin, J. G.;
Hamid, Q.; Powell, W. S. Effects of prostaglandin D2, 15-deoxy-
∆12,14-prostaglandin J2 and selective DP1 and DP2 receptor
agonists on pulmonary infiltration of eosinophils in brown
Norway rats. J. Pharmacol. Exp. Ther. 2005, 313 (1), 64-69.
(6) Monneret, G.; Cossette, C.; Gravel, S.; Rokach, J.; Powell, W. S.
15R-Methyl-prostaglandin D2 is a potent and selective CRTH2/
DP2 receptor agonist in human eosinophils. J. Pharmacol. Exp.
Ther. 2003, 304, 349-355.
Table 4. Pharmacokinetic Data for 10c in Rats
dose
Cmax
Tmax
AUCinf
Cl
t1/2
F
(mg/kg) (ng/mL) (h) (ng/(mL‚h)) ((mL/min)/kg) (h) (%)
1 (iv)
10 (po)
1801
332
619
3480
40
na
2.2
5.5 56
1.8
induction of three CYP450 compounds at 1 µM. No
microsomal metabolism was observed with rat and
human microsomes. No functional activity was seen in
a human ether-a-go-go-related (hERG) potentiomentric
dye fluorescence based functional potassium channel
assay, and no cytotoxicity was observed in a HepG2
hepatocarcinoma cell line. 10c was negative in an Ames
and CHO clastogenicity assay and did not show any
activity up to 1 µM against a panel of >85 enzymes
(including COX-1 and COX-2), receptors, and ion chan-
nels. The clean profile that 10c demonstrated in these
assays led to the pharmacokinetic profile of the com-
pound being determined (Table 4).
10c gave a good pharmacokinetic profile in rats; oral
and iv administration led to acceptable plasma levels
with a good half-life and area under the curve; bioavail-
ability was also favorable. These data suggest that 10c
may be suitable for oral administration for the treat-
ment of inflammatory disorders.
In summary, a novel series of indole N-sulfonyl
compounds that are potent and selective hCRTH2
antagonists is reported. 10c showed activity in cellular
assays and has good oral pharmacokinetic properties
in rats. The molecule is under further biological evalu-
ation and should prove to be a useful tool for under-
standing of the pharmacological role of the CRTH2
receptor in vivo.
(7) Gervais, F. G.; Cruz, R. P. G.; Chateauneuf, A.; Gale, S.; Sawyer,
N.; Nantel, F.; Metters, K.; O’Neill, G. P. Selective modulation
of chemokinesis, degranulation and apoptosis in eosinophils
through the PGD2 receptors CRTH2 and DP. J. Allergy Clin.
Immunol. 2001, 108, 982-988.
(8) (a) Hirai, H.; Tanaka, K.; Takano, S.; Ichimasa, M.; Nakamura,
M.; Nagata, K. Cutting edge: Agonistic effect of indomethacin
on a prostaglandin D2 receptor, CRTH2. J. Immunol. 2002, 168,
981-985. (b) Sawyer, N.; Cauchon, E.; Chateauneuf, A.; Cruz,
R. P. H.; Nicholson, D. W.; Metters K. M.; O’Neill, G. P.; Gervais,
F. G. Molecular pharmacology of the human prostaglandin D2
receptor, CRTH2. Br. J. Pharmacol. 2002, 137 (8), 1163-1172.
(9) Hata, A, N.; Lybrand, T. P.; Marnett, L. J.; Breyer, R. M.
Structural determinants of arylacetic acid NSAIDs necessary
for binding and activation of the PGD2 receptor CRTH2. Mol.
Pharmacol. 2005, 67 (3), 640-647.
Acknowledgment. The authors thank Carole Gay-
et, Chris Palmer, and Frank Schroer for synthesis of
the test compounds.
Supporting Information Available: Experimental pro-
cedures, compound characterization data, assay methods with
additional information, and broad selectivity screening infor-
mation. This material is available free of charge via the
(10) (a) Sugimoto, H.; Scichijo, M.; Lino, T.; Manabe, Y.; Watanabe,
A.; Shimazaki, M.; Gantner, F.; Bacon, K. B. An orally bioavail-
able small molecule antagonist of CRTH2, ramatroban (BAY
u3405), inhibits prostaglandin D2 induced eosinophil migration