4074
B. H. Heasley et al. / Bioorg. Med. Chem. Lett. 14 (2004) 4069–4074
6. Dillon, D. A.; Chen, X.; Zeimetz, G. M. J. Biol. Chem.
1997, 272, 10361–10366.
LPA1
1000
7. Xu, J.; Love, L. M.; Singh, I.; Zhang, Q.-X.; Dewald, J.;
Wang, D.-A.; Fischer, D. J.; Tigyi, G.; Berthiaume, L. G.;
Waggoner, D. W.; Brindley, D. N. J. Biol. Chem. 2000,
275, 27520–27530.
8. Hooks, S. B.; Santos, W. L.; Im, D.-S.; Heise, C. E.;
Macdonald, T. L.; Lynch, K. R. J. Biol. Chem. 2001, 276,
4611–4621.
9. Alderton, F.; Darroch, P.; Sambi, B.; McKie, A.; Ahmed,
I. S.; Pyne, N.; Pyne, S. J. Biol. Chem. 2001, 276, 13452–
13460.
10. Quian, L.; Xu, Y.; Hasegawa, Y.; Aoki, J.; Mills, G. B.;
Prestwich, G. D. J. Med. Chem. 2003, 46, 5575–5578.
11. Heasley, B. H.; Jarosz, R.; Lynch, K. R.; Macdonald,
T. L. Bioorg. Med. Chem. Lett. 2004, 14, 2735–2740.
12. Haudrechy, A.; Chassaing, C.; Riche, C.; Langlois, Y.
Tetrahedron 2000, 56, 3181–3187.
13. Kuhler, T. C.; Fryklund, J.; Bergman, N.-A.; Weilitz, J.;
Lee, A.; Larsson, H. J. Med. Chem. 1995, 38, 4906–4916.
14. Reetz, M. T.; Drewes, M. W.; Schmitz, A. Angew. Chem.,
Int. Ed. Engl. 1987, 26, 1141–1143.
750
500
250
13d + 5uM LPA
13f + 5uM LPA
1 + 5uM LPA
-10
-9
-8
-7
-6
-5
-4
Log[compd]
15. Blackburn, G. M.; Parratt, M. J. J. Chem. Soc., Chem.
Commun. 1982, 1270–1271.
Figure 4. Effect of LPA antagonists on LPA1 receptor GTP[c35S]
binding.11;17 A comparison of 13d and a-hydroxy phosphonate 13f
with lead antagonist 1.
16. (R)-Phosphoric acid mono-{2-octadec-9-enoylamino-3-[4-
(pyridin-3-ylmethoxy)-phenyl]-propyl} ester (7a): 1H
NMR (300 MHz, CD3OD) d 0.83 (t, 3H, J ¼ 6:9 Hz),
1.14–1.29 (m, 11H), 1.39–1.49 (m, 2H), 1.90–1.99 (m, 4H),
2.07 (t, 2H, J ¼ 7:7 Hz), 2.66 (dd, 1H, J ¼ 8:5, 14.2 Hz),
2.85 (dd, 1H, J ¼ 8:5, 14.2 Hz), 3.82–3.90 (m, 2H), 4.14–
4.23 (m, 1H), 5.23–5.29 (m, 4H), 6.92 (d, 2H, J ¼ 8:5 Hz),
7.16 (d, 2H, J ¼ 8:5 Hz), 7.99 (t, 1H, J ¼ 6:5 Hz), 8.57 (d,
LPA1 may be due to a discrepancy between the second
pKa value of unsubstituted phosphonic acids versus the
relatively more acidic phosphoric acids.22–24 Hence,
the substitution of an electronegative heteroatom onto
the methylene group a to phosphorous (13f) increases
acidity and regains LPA1 antagonism. a-Substituted
phosphonates (Fig. 1, ‘X’ ¼ CH(OH or F)) will therefore
provide a useful platform for the realization of meta-
bolically stable LPA1/LPA3 dual antagonists. Progress
toward this end will be reported in due course.
1H, J ¼ 8:1Hz), 8.74 (d, 1H, J ¼ 5:8 Hz), 8.88 (s, 1H); 13
C
NMR (300 MHz, CD3OD) d 13.51, 21.27, 22.78, 26.05,
27.19, 29.09, 29.25, 29.40, 29.48, 29.66, 29.89, 32.10, 36.00,
36.18, 51.32, 66.15, 67.06, 114.79, 114.96, 127.12, 129.83,
129.91, 130.67, 131.81, 138.61, 141.29, 142.04, 144.28,
157.01, 175.11; MS (ESI) m=z 603.3 [M+Hþ, 100%].
Anal. Calcd for C33H51N2O6P: C, 65.76; H, 8.53; N,
4.65. Found: C, 64.63; H, 8.53; N, 4.58. (S)-Phospho-
ric acid mono-{2-octadec-9-enoylamino-3-[4-(pyridin-3-yl-
methoxy)-phenyl]-propyl} ester (7b): this product had
spectroscopic properties identical to its enantiomer.
17. Im, D. S.; Heise, C. E.; Harding, M. A.; George, S. R.;
O’Dowd, B. F.; Theodorescu, D.; Lynch, K. R. Mol.
Pharm. 2000, 57, 753–759.
18. DNAs encoding LPA1, LPA2, or LPA3 receptors were
transfected into HEK293T cells along with DNAs encod-
ing Gai2, Gb, and Gc2 proteins. After 48 h, microsomes
were prepared and used in a GTPc[35S] binding assay, as
described.14 For determination of IC50 values, a concen-
tration of 1-oleoyl-LPA equal to the EC80 value (LPA1:
1 lM; LPA3: 1 0lM) was collided with antagonists at
concentrations ranging from 0.1to 30,000 nM. Points are
in triplicate and are representative of at least two
experiments.
In summary, a detailed SAR of LPA receptor antago-
nists has been described. A nonhydrolyzable and highly
potent LPA3 receptor-selective antagonist has been
developed. Compound 13d represents a pharmacologic
agent with which to manipulate LPA signaling in a
number of experimental systems so as to define the
LPA3 receptor-specific pathophysiological responses to
LPA stimulation in intact animals.
Acknowledgement
Support by NIH (R01-GM52722).
19. Olbe, L.; Carlsson, E.; Lindberg, P. Nature Rev. Drug
Disc. 2003, 2, 132–139.
References and notes
20. Brown, H. C.; Mihm, X. R. J. Am. Chem. Soc. 1955, 77,
1723–1726.
1. Tigyi, G.; Parrill, A. L. Prog. Lipid Res. 2003, 42, 498–526.
2. Mills, G. B.; Moolenaar, W. H. Nat. Rev. Cancer 2003, 3,
582–591.
3. Sciorra, V. A.; Morris, A. J. Biochim. Biophys. Acta 2002,
1582, 45–51.
4. Brindley, D. N.; Waggoner, D. W. J. Biol. Chem. 1998,
273, 24281–24284.
5. Hooks, S. B.; Ragan, S. P.; Lynch, K. R. FEBS Lett. 1998,
427, 188–192.
21. Kaljurand, I.; Rodima, T.; Leito, I.; Koppel, I. A.;
Schwesinger, R. J. Org. Chem. 2000, 65, 6202–6208.
22. Nieschalk, J.; Batsanov, A. S.; O’Hagan, D.; Howard, J.
A. K. Tetrahedron 1996, 52, 165–176.
23. Swierczek, K.; Pandey, A. S.; Peters, J. W.; Hengge, A. C.
J. Med. Chem. 2003, 46, 3703–3708.
24. Santos, W. L.; Heasley, B. H.; Jarosz, R.; Carter, K. M.;
Lynch, K. R.; Macdonald, T. L. Bioorg. Med. Chem. Lett.
2004, 14, 3473–3476.