Angewandte
Chemie
1974, 7, 351; g) S. Neumann, J. K. Kochi, J. Org. Chem. 1975, 40,
Furthermore, the synergetic effect between copper and iron
opens new synthetic possibilities that are being actively
investigated in our laboratories.[16]
599; h) R. S. Smith, J. K. Kochi, J. Org. Chem. 1976, 41, 502; i) G.
Molander, B. Rahn, D. C. Shubert, S. E. Bonde, Tetrahedron
Lett. 1983, 24, 5449.
[6] a) G. Cahiez, S. Marquais, Pure Appl. Chem. 1996, 68, 669; b) G.
Cahiez, S. Marquais, Tetrahedron Lett. 1996, 37, 1773; c) G.
Cahiez, H. Avedissian, Synthesis 1998, 1199; d) K. Shinokubo, K.
Oshima, Eur. J. Org. Chem. 2004, 2081; e) M. A. Fakhfakh, X.
Franck, R. Hocquemiller, B. Figadꢃre, J. Organomet. Chem.
2001, 624, 131; f) M. Hocek, H. Dvorꢄkovꢄ, J. Org. Chem. 2003,
68, 5773; g) B. Hꢁlzer, R. W. Hoffmann, Chem. Commun. 2003,
732; h) W. Dohle, F. Kopp, G. Cahiez, P. Knochel, Synlett 2001,
1901; i) M. Hojo, Y. Murakami, H. Aihara, R. Sakuragi, Y. Baba,
A. Hosomi, Angew. Chem. 2001, 113, 641; Angew. Chem. Int. Ed.
2001, 40, 621; j) M. Nakamura, A. Hirai, E. Nakamura, J. Am.
Chem. Soc. 2001, 123, 978; k) E. Alvarez, T. Cuvigny, C. H.
du Penhoat, M. Julia, Tetrahedron 1998, 54, 119; l) V. Finanda-
nese, G. Marchese, V. Martina, L. Ronzini, Tetrahedron Lett.
1984, 25, 4805.
[7] a) A. Fꢅrstner, A. Leitner, M. Mꢆndez, H. Krause, J. Am. Chem.
Soc. 2002, 124, 13856; b) A. Fꢅrstner, A. Leitner, Angew. Chem.
2002, 114, 632; Angew. Chem. Int. Ed. 2002, 41, 308; c) A.
Fꢅrstner, A. Leitner, Angew. Chem. 2003, 115, 320; Angew.
Chem. Int. Ed. 2003, 42, 308; d) G. Seidel, D. Laurich, A.
Fꢅrstner, J. Org. Chem. 2004, 69, 3950; e) B. Scheiper, M.
Bonnekessel, H. Krause, A. Fꢅrstner, J. Org. Chem. 2004, 69,
3943; f) A. Fꢅrstner, D. De Souza, L. Parra-Rapado, J. T. Jensen,
Angew. Chem. 2003, 115, 5516; Angew. Chem. Int. Ed. 2003, 42,
5355; g) M. Nakamura, K. Matsuo, S. Ito, E. Nakamura, J. Am.
Chem. Soc. 2004, 126, 3686; h) T. Nagano, T. Hayashi, Org. Lett.
2004, 6, 1297; i) R. Martin, A. Fꢅrstner, Angew. Chem. 2004, 116,
4045; Angew. Chem. Int. Ed. 2004, 43, 3955.
[8] K. Reddy, P. Knochel, Angew. Chem. 1996, 108, 1812; Angew.
Chem. Int. Ed. Engl. 1996, 35, 1700.
[9] a) B. H. Lipshutz, S. Sengupta, Org. React. 1992, 41, 135;
b) R. J. K. Taylor, Organocopper Reagents, Oxford University
Press, Oxford, 1994; c) N. Krause, Modern Organocopper
Chemistry, Wiley-VCH, Weinheim, 2002.
[10] a) A. Krasovskiy, P. Knochel, Angew. Chem. 2004, 116, 3316;
Angew. Chem. Int. Ed. 2004, 43, 3333; b) for a Review, see: P.
Knochel, W. Dohle, N. Gommermann, F. F. Kneisel, F. Kopp, T.
Korn, I. Sapountzis, V. A. Vu, Angew. Chem. 2003, 115, 4438;
Angew. Chem. Int. Ed. 2003, 42, 4302.
[11] P. Knochel, M. C. P. Yeh, S. C. Berk, J. Talbert, J. Org. Chem.
1988, 53, 2390.
[12] C. Piazza, P. Knochel, Angew. Chem. 2002, 114, 3397; Angew.
Chem. Int. Ed. 2002, 41, 3263.
[13] In the absence of the iron catalyst, no reaction was observed for
2-chlorobenzophenone.
Experimental Section
Typical procedure (4h): A 25-mL Schlenk tube equipped with a
magnetic stirring bar and a septum was charged with ethyl 4-
iodobenzoate (855 mg, 3.10 mmol) and DME (5 mL), and the
solution was cooled to À208C. iPrMgCl (3.3 mL, 3.0 mmol, 0.90m in
THF) was then added, and the reaction mixture was stirred at this
temperature for 15 min. Subsequently, a solution of CuCN·2LiCl
(2.8 mL, 2.8 mmol, 1.0m in THF) was added, and the reaction mixture
was stirred for an additional 10 min. A solution of 4-iodobenzonitrile
(3e) (229 mg, 1.00 mmol) and [Fe(acac)3] (35 mg, 0.10 mmol) dis-
solved in DME (3 mL) was added in one portion, and the reaction
mixture was heated at 808C for 3 h. The reaction mixture was
quenched with saturated aqueous NH4Cl and was extracted with
CH2Cl2 (3 ꢀ 40 mL). The organic fractions were washed with satu-
rated aqueous NH4Cl/NH3 (9:1) (50 mL) and brine (50 mL), dried
over Na2SO4, filtered, and the solvent was evaporated in vacuo.
Purification by flash chromatography (pentane/Et2O 9:1) furnished
4h as a colorless solid (181 mg, 72%).
Received: September 16, 2004
Published online: December 30, 2004
Keywords: cross-coupling · homogeneous catalysis · iron ·
.
copper · magnesium
[1] a) Metal-catalyzed Cross-coupling Reactions (Eds.: F. Diederich;
P. J. Stang), Wiley-VCH, Weinheim, 1998; b) J. Tsuji, Transition
Metal Reagents and Catalysts: Innovations in Organic Synthesis,
Wiley, Chichester, 1995; c) Cross-Coupling Reactions. A Prac-
tical Guide (Ed. N. Miyaura), Top. Curr. Chem. 2002, 219.
[2] Handbook of organopalladium Chemistry for Organic Synthesis
(Ed.: E. Negishi), Wiley-Interscience, New York, 2002.
[3] a) C. Dai, G. C. Fu, J. Am. Chem. Soc. 2001, 123, 2719; b) A. F.
Littke, G. C. Fu, J. Am. Chem. Soc. 2001, 123, 6989; c) A. F.
Littke, L. Schwarz, G. C. Fu, J. Am. Chem. Soc. 2002, 124, 6343;
d) A. F. Littke, G. C. Fu, Angew. Chem. 2002, 114, 4350; Angew.
Chem. Int. Ed. 2002, 41, 4176; e) I. D. Hills, M. R. Netherton,
G. C. Fu, Angew. Chem. 2003, 115, 5927; Angew. Chem. Int. Ed.
2003, 42, 5749; f) A. C. Frisch, A. Zapf, O. Briel, B. Kayser, N.
Shaikh, M. Beller, J. Mol. Catal. A 2004, 214, 231; g) A. Tewari,
M. Hein, A. Zapf, M. Beller, Synthesis 2004, 935; h) F. Rataboul,
A. Zapf, R. Jackstell, S. Harkal, T. Riermeier, A. Monsees, U.
Dingerdissen, M. Beller, Chem. Eur. J. 2004, 10, 2983.
[4] a) M. Kumada, Pure Appl. Chem. 1980, 52, 669; b) T.-Y. Luh,
Acc. Chem. Res. 1991, 24, 257; c) S. Sengupta, M. Leite, D. S.
Raslan, C. Quesnelle, V. Snieckus, J. Org. Chem. 1992, 57, 4066;
d) A. F. Indolese, Tetrahedron Lett. 1997, 38, 3513; e) E.
Shirakawa, K. Yamasaki, T. Hiyama, Synthesis 1998, 1544;
f) A. Sophia, E. Karlstrꢁm, K. Itami, J.-E. Bꢂckvall, J. Am.
Chem. Soc. 2000, 122, 6950; g) J. Montgomery, Acc. Chem. Res.
2000, 33, 467; h) R. Giovannini, P. Knochel, J. Am. Chem. Soc.
1998, 120, 11186; i) B. H. Lipshutz, Adv. Synth. Catal. 2001, 343,
313; j) B. H. Lipshutz, G. Bulwo, F. Fernandez-Lazaro, S.-K.
Kim, R. Lowe, P. Mollard, K. L. Stevens, J. Am. Chem. Soc. 1999,
121, 11664.
[14] We submitted the substituted iodoesters 3g–i to Pd-and Ni-
catalyzed cross-coupling and found that in the case of Pd
catalysis, 4-iodoester 3i reacts significantly faster than 3g and
3h, whereas under Ni catalysis, the 3-iodoester 3h is the fastest.
These results indicate that the mechanism of Ni-, Pd- and Fe-
catalyzed cross-coupling reactions is significantly different, as
electronic and steric effects of the substituents affect them
differently (see Supporting Information for details).
[15] Interestingly, copper reagents made from aryl lithium species
can also be used. The reaction proceeds at a similar rate
(somewhat faster). The occurrence of an I–Cu exchange reaction
is minimized with this type of copper species (ArCu(CN)Li).
[16] A patent application for this and related crossing-coupling
reactions has been filed.
[5] a) M. Tamura, J. K. Kochi, J. Am. Chem. Soc. 1971, 93, 1487;
b) M. Tamura, J. K. Kochi, Synthesis 1971, 93, 303; c) M. Tamura,
J. K. Kochi, J. Organomet. Chem. 1971, 31, 289; d) M. Tamura,
J. K. Kochi, Bull. Chem. Soc. Jpn. 1971, 44, 3063; e) M. Tamura,
J. K. Kochi, Synthesis 1971, 303; f) J. K. Kochi, Acc. Chem. Res.
Angew. Chem. Int. Ed. 2005, 44, 1654 –1657
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
1657