Angewandte
Chemie
[1] K. C. Nicolaou, S. A. Snyder, Classics in Total Synthesis II,
Wiley-VCH, Weinheim, 2003, chap. 11, p. 351.
[2] a) D. Barnes-Seeman, E. J. Corey, Org. Lett. 1999, 1, 1503;
b) K. C. Nicolaou, R. Jautelat, G. Vassilikogiannakis, P. S. Baran,
K. B. Simonsen, Chem. Eur. J. 1999, 5, 3651; c) K. C. Nicolaou,
K. B. Simonsen, G. Vassilikogiannakis, P. S. Baran, V. P. Vidali,
E. N. Pitsinos, E. A. Couladouros, Angew. Chem. 1999, 111,
3762; Angew. Chem. Int. Ed. 1999, 38, 3555; d) K. C. Nicolaou,
G. Vassilikogiannakis, K. B. Simonsen, P. S. Baran, Y. L. Zhong,
V. P. Vidali, E. N. Pitsinos, E. A. Couladouros, J. Am. Chem. Soc.
2000, 122, 3071.
[3] a) N. Abe, O. Sugimoto, K.-I. Tanji, A. Hirota, J. Am. Chem. Soc.
2000, 122, 12606; b) N. Abe, O. Sugimoto, T. Arakawa, K.-I.
Tanji, A. Hirota, Biosci. Biotechnol. Biochem. 2001, 65, 2271.
[4] a) A total synthesis of (+)-bisorbicillinol (2) in 51% ee has been
reported, see: L. H. Pettus, R. W. Van de Water, T. R. R. Pettus,
Org. Lett. 2001, 3, 905; b) for a chiral-auxiliary-directed synthesis
of chiral quinols bearing a heteroatom-substituted quaternary
center, see: L. H. Mejorado, C. Hoarau, T. R. R. Pettus, Org.
Lett. 2004, 6, 1535; c) for a comprehensive review, see: D.
Magdziak, S. Meek, T. R. R. Pettus, Chem. Rev. 2004, 104, 1383.
[5] a) R. Andrade, W. A. Ayer, P. P. Mebe, Can. J. Chem. 1992, 70,
2526; b) J. L. Wood, B. D. Thompson, N. Yusuff, D. A. Pflum,
M. S. P. Matthꢀus, J. Am. Chem. Soc. 2001, 123, 2097.
[6] a) L. Claisen, O. Lowman, Ber. Dtsch. Chem. Ges. 1887, 20, 651;
b) D. Vorlꢀnder, Ber. Dtsch. Chem. Ges. 1894, 27, 2053; c) D.
Vorlꢀnder, Justus Liebigs Ann. Chem. 1897, 294, 253.
[7] S.-K. Tian, R. Hong, L. Deng, J. Am. Chem. Soc. 2003, 125, 9900.
[8] a) T. Holm, Tetrahedron Lett. 1966, 7, 3329; b) E. C. Ashby, Q.
Rev. Chem. Soc. 1967, 21, 259.
[9] A. B. Simth III, P. J. Jerris, J. Org. Chem. 1982, 47, 1845.
[10] N. Nakajima, K. Horita, R. Abe, O. Yonemitsu, Tetrahedron
Lett. 1988, 29, 4139.
[11] a) W. Lehnert, Tetrahedron Lett. 1970, 11, 4723; b) W. Lehnert,
Tetrahedron 1972, 28, 663.
[12] G. Slomp, Jr, J. L. Johnson, J. Am. Chem. Soc. 1958, 80, 915.
[13] Alkynonyl ester 15 is prepared in quantitative yield from the
reaction of commercially available ethyl malonyl chloride with
1-pentynylmagnesium chloride (see the Supporting Informa-
tion).
[14] a) D. Ma, Y. Lin, X. Lu, Y. Yu, Tetrahedron Lett. 1988, 29, 1045;
b) B. M. Trost, T. Schmidt, J. Am. Chem. Soc. 1988, 110, 2301;
c) Y. Inoue, S. Imaizumi, J. Mol. Catal. 1988, 49, L19; for
applications in syntheses, see: d) D. Desmaꢁle, Tetrahedron
1992, 48, 2925; e) K. Matsuo, Y. Sakaguchi, Chem. Pharm. Bull.
1997, 45, 1620.
[15] L. Yan, D. Kahne, Synlett 1995, 523.
[16] Synthetic (+)-2, (+)-4, and (+)-6 were spectroscopically iden-
tical to reported natural products (see the Supporting Informa-
tion for details). (+)-2: [a]D = + 1818 (c = 0.23, MeOH)
(Ref. [17a]: + 195.28 (c = 0.5, MeOH)); (+)-6: [a]D = + 3108 (c =
0.05, MeOH) (Ref. [17b]: + 3188 (c = 0.1, MeOH)); (+)-4: [a]D =
+ 128.68 (c = 0.14, MeOH) (Ref. [17b]: + 124.48 (c = 0.5, MeOH)).
[17] a) N. Abe, T. Murata, A. Hirota, Biosci. Biotechnol. Biochem.
1998, 62, 661; b) N. Abe, T. Murata, A. Hirota, Biosci.
Biotechnol. Biochem. 1998, 62, 2120.
[18] The absolute configuration of cyanohydrin 9 has been deter-
mined to be R;[7] consequently, the current asymmetric syntheses
with (R)-9 as an intermediate provide direct experimental
evidence confirming the previous assignment of the absolute
configurations for (+)-2, (+)-4, and (+)-6 based on their
biosynthesis hypothesis (see the Supporting Information).
Angew. Chem. Int. Ed. 2005, 44, 3478 –3481
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
3481