CT Photochirogenetic Reaction with Chiral TCNAQ
in the presence of TiCl4.8 Their detailed studies on redox
behavior revealed that TCNAQs undergo successive two-
electron capture nearly at the same potential7,9 which can
be accounted for by a drastic structural change upon
reduction.10 After these pioneering works, several groups,
including us, succeeded in preparing TCNAQs by differ-
ent methods,11-13 yet the TiCl4-assisted preparation is the
most versatile for obtaining a wide variety of function-
alized materials based on the TCNAQ skeleton,14 includ-
ing the intramolecular donor-acceptor compounds,15
photoconducting polymers,16 EL devices,17 and LB films.18
In addition to these examples, we recently found that
TCNAQs with a chiral ester group can serve as an
unprecedented molecular response system, by which an
electrochemical input is transduced into three-way spec-
tral outputs (UV-vis, fluorescence, and circular dichro-
ism).19 Although only a limited number of chiral electron
acceptors have been reported to date,20 we believe that
they may constitute an important class of compounds for
the development of novel materials such as electrochi-
roptical,21 mesophase,22 and NLO devices.23 In our con-
tinuing studies on chiral redox systems, we have found
that the newly designed TCNAQs 1 with a chiral amide
auxiliary can act as stereodifferentiating oxidants under
CT excitation conditions. In the first portion of this paper,
we report the preparation, redox properties, and X-ray
structures of the title acceptors 1. In the second part, we
SCHEME 1. Photoinduced Electron-Transfer
Reactions of TCNAQs 1 and Pinacol 2
show the photochemical reactions of TCNAQs 1 with rac-
1,2-dianisylacenaphthene-1,2-diol 2 that give the dihydro-
TCNAQs 3 and achiral 1,8-dianisoylnaphthalene 4
(Scheme 1). Racemic pinacol 2 was partially deracemized
by 1 upon irradiation and thus provides a new entry into
the less well-developed subject of photochirogenesis24
under photoinduced electron-transfer (PET) conditions.25,26
(7) Aumu¨ller, A.; Hu¨nig, S. Liebigs Ann. Chem. 1984, 618.
(8) Lehnert, W. Tetrahedron Lett. 1970, 11, 4723.
(9) Evans, D. H.; Hu, K. J. Chem. Soc., Faraday Trans. 1996, 92,
3983.
(10) Suzuki, T.; Higuchi, H.; Tsuji, T.; Nishida, J.; Yamashita, Y.;
Miyashi, T. In Chemistry of Nanomolecular Systems; Nakamura, T.,
Matsumoto, T., Tada, H., Sugiura, K., Eds.; Springer-Verlag: Heidel-
berg, 2003; Chapter 1: Dynamic Redox Systems: Toward the Realiza-
tion of Unimolecular Memory; p 3.
(11) Kini, A. M.; Cowan, D. O.; Gerson, F.; Mo¨ckel, R. J. Am. Chem.
Soc. 1985, 107, 556.
Results and Discussion
(12) (a) Nishizawa, Y.; Suzuki, T.; Yamashita, Y.; Miyashi, T.;
Mukai, T. Nippon Kagaku Kaishi 1985, 904. (b) Yamashita, Y.; Suzuki,
T.; Mukai, T. Nippon Kagaku Kaishi 1986, 268.
1. TCNAQs 1a-f with a Chiral Amide Auxiliary.
Preparation and Redox Properties. R-Substituted
benzylamines are easily accessible asymmetric mol-
ecules,27 and the benzylcarbamoyl-TCNAQs 1a-f were
(13) Torres, E.; Panetta, C. A.; Metzger, R. M. J. Org. Chem. 1987,
52, 2944.
(14) (a) Ong, B. S.; Keoshkerian, B. J. Org. Chem. 1984, 49, 5002.
(b) Mart´ın, N.; Behnisch, R.; Hanack, M. J. Org. Chem. 1989, 54, 2563.
(c) Maruyama, K.; Imahori, H.; Nakagawa, K.; Tanaka, N. Bull. Chem.
Soc. Jpn. 1989, 62, 1626.
(21) (a) Westermeier, C.; Gallmeier, H.-C.; Komma, M.; Daub, J.
Chem. Commun. 1999, 2427. (b) Beer, G.; Niederalt, C.; Grimme, S.;
Daub, J. Angew. Chem., Int. Ed. 2000, 39, 3252. (c) Zelikovich, L.;
Libman, J.; Shanzer, A. Nature 1995, 374, 790. (d) Nishida, J.; Suzuki,
T.; Ohkita, M.; Tsuji, T. Angew. Chem., Int. Ed. 2001, 40, 3251. (e)
Suzuki, T.; Yamamoto, R.; Higuchi, H.; Hirota, E.; Ohkita, M.; Tsuji,
T. J. Chem. Soc., Perkin Trans. 2 2002, 1937. (f) Higuchi, H.; Ohta,
E.; Kawai, H.; Fujiwara, K.; Tsuji, T.; Suzuki, T. J. Org. Chem. 2003,
68, 6605.
(22) (a) Miura, A.; Chen, Z.; Uji-i, H.; Feyter, S. D.; Zdanzowska,
M.; Jonkheijm, P.; Schenning, A. P. H. J.; Meijer, E. W.; Wu¨rthner,
F.; De Schryver, F. C. J. Am. Chem. Soc. 2003, 125, 14968. (b) Praefcke,
K.; Singer, D.; Eckert, A. Liq. Cryst. 1994, 16, 53.
(23) (a) Ravi, M.; Gangopadhyay, P.; Rao, D. N.; Cohen, S.; Agranat,
I.; Radhakrishna, T. P. Chem. Mater. 1998, 10, 2371. (b) Andreu, R.;
Malfant, I.; Lacroix, P. G.; Gornitzka, H.; Nakatani, K. Chem. Mater.
1999, 11, 840.
(24) (a) Inoue, Y.; Sugawara, N.; Wada, T. Pure Appl. Chem. 2001,
73, 475 and references therein. (b) Inoue, Y.; Wada, T.; Asaoka, S.;
Sato, H.; Pete, J.-P. Chem. Commun. 2000, 251 and references therein.
(c) Kim, J.-I.; Schuster, G. B. J. Am. Chem. Soc. 1990, 112, 9635. (d)
Hammond, G. S.; Cole, R. S. J. Am. Chem. Soc. 1965, 87, 3256. (e)
Griesbeck, A. G.; Meierhenrich, U. J. Angew. Chem., Int. Ed. 2002,
41, 3147.
(15) (a) Gaicalone, F.; Segura, J. L.; Mart´ın, N.; Catellani, M.;
Luzzati, S.; Lupsac, N. Org. Lett. 2003, 5, 1669. (b) Perepichka, D. F.;
Bryce, M. R.; Batsanov, A. S.; Howard, J. A. K.; Cuello, A. O.; Gray,
M.; Rotello, V. M. J. Org. Chem. 2001, 66, 4517. (c) Herranz, M. AÄ .;
Illescas, B.; Mart´ın, N. J. Org. Chem. 2000, 65, 5728. (d) de Miguel,
P.; Bryce, M. R.; Goldenberg, L. M.; Beeby, A.; Khodorkovsky, V.;
Shapiro, L.; Neimz, A.; Cuello, A. O.; Rotello, V. J. Mater. Chem. 1998,
8, 71. (e) Bando, P.; Mart´ın, N.; Segura, J. L.; Seoane, C.; Ort´ı, E.;
Viruela, P. M.; Viruela, R.; Albert, A.; Cano, F. H. J. Org. Chem. 1994,
59, 4618. (f) Suzuki, T.; Miyanari, S.; Kawai, H.; Fujiwara, K.;
Fukushima, T.; Miyashi, T.; Yamashita, Y. Tetrahedron 2004, 60, 1997.
(16) (a) Perepichika, I. F.; Mysyk, D. D.; Sokolov, N. I. Synth. Met.
1999, 101, 9. (b) Giacalone, F.; Segure, J. L.; Mart´ın, N.; Catellani,
M.; Luzzati, S.; Lupsac, N. Org. Lett. 2003, 5, 1669.
(17) Cao, Y.-A.; Bai, Y.-B.; Men, Q.-J.; Chen, C.-H.; Yang, J. -H.;
Chai, X.-D.; Yang, W.-S.; Wu, Z.-W.; Li, T.-J. Synth. Met. 1997, 85,
1267.
(18) Vorob′eva, S. L.; Berzina, T. S. J. Chem. Soc., Perkin Trans. 2
1992, 1133.
(19) Higuchi, H.; Ichioka, K.; Kawai, H.; Fujiwara, K.; Ohkita, M.;
Tsuji, T.; Suzuki, T. Tetrahedron Lett. 2004, 45, 3027.
(20) (a) Il′ina, I. G.; Ivanova, E. V.; Sokolova, E. L.; Mikhalev. O. V.
Z. Org. Khim. 1994, 30, 254. (b) Dreher, S. D.; Weix, D. J.; Katz, T. J.
J. Org. Chem. 1999, 64, 3671. (c) Rajca, A.; Safronov. A.; Rajca, S.;
Wongsriratanakul, J. J. Am. Chem. Soc. 2000, 122, 3351. (d) Go´mez,
R.; Segura, J. L.; Mart´ın, N. J. Org. Chem. 2000, 65, 7566. (e) Tsubata,
Y.; Suzuki, T.; Miyashi, T.; Yamashita, Y. J. Org. Chem. 1992, 57, 6749.
(f) Itami, K.; Palmgren, A.; Thorarensen, A.; Ba¨ckuvall, J.-E. J. Org.
Chem. 1998, 63, 6466.
(25) Saito, H.; Mori, T.; Wada, T.; Inoue, Y. J. Am. Chem. Soc. 2004,
126, 1900.
(26) (a) Asaoka, S.; Kitazawa, T.; Wada, T.; Inoue, Y. J. Am. Chem.
Soc. 1999, 121, 8486. (b) Asaoka, S.; Wada, T.; Inoue, Y. J. Am. Chem.
Soc. 2003, 125, 3008. (c) Kaneda, M.; Nishiyama, Y.; Asaoka, S.; Mori,
T.; Wada, T.; Inoue, Y. Org. Biomol. Chem. 2004, 2, 1295.
J. Org. Chem, Vol. 70, No. 14, 2005 5593