F. Taran et al.
SCP in Millipore quality water. All experiments were carried out at 258C
in buffers with a fixed ionic strength of 0.1m prepared as follows: MES
(for pH 5.5), HEPES (for pH 7.4) or CHES (for pH 9) (acid forms)
(12.5 mmol) and nBu4N+Clꢀ (112.5 mmol) were dissolved in Millipore
quality water (1 L). Adjustment of the pH was done using nBu4N+
OH·30H2O. A 100 mm SCP/UO22þ complex solution was prepared by
mixing: SCP stock solution (6.25 mL) diluted in the appropriate buffer
(12.5 mm, 242.5 mL) with uranyl stock solution (1.25 mL) for 1 h at room
temperature. Candidates ligands were dissolved in water to get 400 mm
solutions.
[2] a) C. Madic, Radiat. Prot. Dosim. 1989, 26, 15–22; b) L. A. Dietz,
Bull. Soc. Pharm. Lille Bull. Atomic Scientists 1991, 47, 47; c) A.
Max, T. Mason, ATW-Int. Z. Kernenergie 1996, 41, 79–84.
[3] Q. Lu, J. H. Callahan, G. E. Collins, Chem. Commun. 2000, 1913–
1914.
[4] a) S. Shinkai, H. Koreishi, K. Ueda, T. Arimura, O. Manabe, J. Am.
Chem. Soc. 1987, 109, 6371–6376; b) J. Vincent, J. F. Desreux, Inorg.
Chem. 1996, 35, 7205–7210; c) J. L. Sessler, D. Seidel, A. E. Vivian,
V. Lynch, B. L. Scott, D. W. Keogh, Angew. Chem. 2001, 113, 611–
614; Angew. Chem. Int. Ed. 2001, 40, 591–594; d) I. Tabushi, Y.
Kobuke, K. Ando, M. Kishimoto, E. Ohara, J. Am. Chem. Soc. 1980,
102, 5948–5949; e) T. N. Lambert, L. Dasaradhi, V. J. Huber, A. S.
Gopalan, J. Org. Chem. 1999, 64, 6097–6101.
[5] a) M. H. Battacharyya, B. Breitenstein, H. Mꢀtivier, B. A. Muggen-
burg, G. N. Stradling, V. Volf, Radiat. Prot. Dosim. 1992, 41, 27–36;
b) G. N. Stradling, M. H. Henge-Napoli, F. Paquet, J. L. Poncy, P.
Fritsch, D. M. Taylor, Radiat. Prot. Dosim. 2000, 87, 29–40; c) F.
Paquet, B. Ramounet, M. H. Henge-Napoli, H. Mꢀtivier, P. Gour-
melon, Radiat. Prot. Dosim. 1998, 79, 467–470; d) M. Archimbaud,
M. H. Henge-Napoli, D. Lilienbaum, M. Desloges, C. Montagne,
Radiat. Prot. Dosim. 1994, 53, 327–330; e) J. L. Domingo, A.
Ortega, J. M. Llobet, J. L. Paternain, J. Corbela, Res. Commun.
Chem. Pathol. Pharmacol. 1989, 64, 161–164; f) G. N. Strandling,
S. A. Gray, J. C. Moody, M. Ellender, Hum. Exp. Toxicol. 1991, 10,
195–198.
General procedure for the screening of the ligands library: In each well
of a microtiter plate 100 mm SCP/UO22þ solution (200 mL) and 400 mm
ligand solution (50 mL) were mixed at 258C for 36 h. Controls experi-
ments (without ligand and without UO22þ) were made in each plates. All
experiments were done in duplicate. Control experiments (SCP alone,
SCP/UO2 and SCP/competitive ligand mixtures) were carried out on
each plate and used to calculate the percentage of SCP/UO2 displace-
ment or to control that the competitive ligand did not interfere with the
UV/Vis properties of SCP. Absorbance measurements were carried out
on an absorbance plate reader by staining at 690 nm.
Using the speciation program Hyss, it was possible to determine the
value of the conditional constants, defined in Equation (1), of the com-
petitive ligands L’ in case of the formation of UL’ 1:1 complex.
Kcond ¼ ½UL0ꢂ=ð½Uꢂð½L0ꢂ þ ½HL0ꢂ þ ½H2L0ꢂ þ . . . þ ½HnL0ꢂÞÞ
ð1Þ
[6] R. W. Leggett, Health Phys. 1989, 57, 365–383.
[7] M. P. Finkel, Proc. Soc. Exp. Biol. Med. 1953, 83, 494–498.
[8] a) J. Xu, K. N. Raymond, Inorg. Chem. 1999, 38, 308–315; b) P. W.
Durbin, B. Kullgren, J. Xu, K. N. Raymond, Radiat. Prot. Dosim.
1994, 53, 305–309; c) P. W. Durbin, B. Kullgren, J. Xu, K. N. Ray-
mond, Radiat. Prot. Dosim. 1998, 79, 433–443.
[9] a) P. W. Durbin, B. Kullgren, J. Xu, K. N. Raymond, Health Phys.
1997, 72, 865–879; b) P. W. Durbin, B. Kullgren, S. N. Ebbe, J. Xu,
K. N. Raymond, Health Phys. 2000, 78, 511–521.
[10] a) M. C. Pirrung, K. Park, L. N. Tumey, J. Comb. Chem. 2002, 4,
329–344; b) T. Opatz, R. M. Liskamp, J. Comb. Chem. 2002, 4, 275–
284; c) A. J. Brouwer, H. J. van der Linden, R. M. J. Liskamp, J. Org.
Chem. 2000, 65, 1750–1757; d) C. Gennari, H. P. Nestler, U. Piarulli,
B. Salom, Liebigs Ann. 1997, 637–647; e) I. Chataigner, C. Gennari,
S. Ongeri, U. Piarulli, S. Ceccarelli, Chem. Eur. J. 2001, 7, 2628–
2634; f) C. Gennari, U. Piarulli, Chem. Rev. 2003, 103, 3071–3100.
[11] a) I . Tabushi, Y. Kobuke, K. Ando, M. Kishimoto, E. Ohara, J. Am.
Chem. Soc. 1980, 102, 5948–5949; S. Shinkai, H. Koreishi, K. Ueda,
T. Arimura, O. Manube, J. Am. Chem. Soc. 1987, 109, 6371–6376.
[12] I . Tabushi, Y. Kobuke, A. Yoshizawa, J. Am. Chem. Soc. 1984, 106,
2481–2482 and references therein.
Determination of the SCP/UO2 complexation constants: The complexa-
tion constants were determined by measuring the absorbance spectra of
an equimolar solution of SCP/UO2 at pH ranging from 1 to 10. An aque-
ous stock solution (250 mL) containing nBu4N+Clꢀ (0.1m), SCP (20 mm)
and UO2(OAc)2·2H2O (20 mm) was prepared and the pH adjusted to 1
with an aqueous solution of HCl. A series of 44 samples were prepared
in separate sealed containers at various pH using nBu4N+OHꢀ·30H2O.
After the samples had been equilibrated in the dark at 258C for at least
48 h, a potentiometric measurement of pH and an absorbance spectrum
were recorded for each solution. Data analysis was performed with the
pHab spectral componentization and least-square program. All equilibri-
um constants were defined as cumulative formation constants according
to Equation (2); SCP is designated as L.
m
n
z
mU þ nL þ zH Ð ½UmLnHzꢂ; bmlh ¼ ½UmLnHzꢂ=ð½Uꢂ ½Lꢂ ½Hꢂ Þ ð2Þ
A typical analysis of an experiment included approximately 15 equilibri-
um constants (Ka and UO22þ constants for SCP, UO22þ hydrolysis constants
and Kw). Despite this complexity the refinements were stable since only
three constants were refined (formation constants b110, b111, and b112 are
given in Figure 2). The theoretical UV spectra are in good agreement
with the experimental UV spectra (see Supporting Information).
[13] O. Braun, C. Contino, M. H. Hengꢀ-Napoli, E. Ansoborlo, B. Pucci,
Analusis 1999, 27, 65–68.
[14] a) Z. Cizek, J. Dolezal, Anal. Chim. Acta 1979, 109, 381; b) V. M.
Ivanov, N. V. Ermakova, J. Anal. Chem. 2002, 57, 110–117; c) Z.
Cizek, Anal. Chim. Acta 1979, 109, 381–391.
[15] A.-M. Albrecht-Gary, S. Blanc, F. Biaso, F. Thomas, P. Baret, G.
Gellon, J-L. Pierre, G. Serratrice, Eur. J. Inorg. Chem. 2003, 2596–
2605.
Acknowledgements
[16] See Supporting Information for details.
This work was supported by the “Nuclear Toxicology” program of the
CEA for which grateful acknowledgement is made. We also thank E. An-
soborlo for helpful discussions, E. Zekri and D. Buisson for experimental
assistance with MS and LC/MS measurements.
[17] V. M. S. Gil; N. C. Oliveira, J. Chem. Educ. 1990, 67, 473–478.
[18] P. Gans, A. Sabatini, A. Vacca, Anal. Chim. Acta 1999, 89, 45–49.
[19] L. Alderighi, P. Gans, A. Ienco, D. Peters, A. Sabatini, A. Vacca,
Coord. Chem. Rev. 1999, 184, 311–318.
[20] For compounds 1D–G, 2F–H, 3F–G, 4B–F, 4H, 5B and 5E: a) R.
Burgada, T. Bailly, M. Lecouvey, V. Larue, Y. Leroux, Eur. J. Org.
Chem. 2001, 349–352; b) T. Bailly, R. Burgada, T. Prangꢀ, M. Le-
couvey, Tetrahedron Lett. 2003, 44, 189–192; c) R. Burgada, T.
Bailly, M. Lecouvey, C. R. Chim. 2004, 7, 35–39; d) M. Kanaan, R.
Burgada, Phosphorus Sulfur Relat. Elem. 1988, 37, 217–229; e) T.
Bailly, R. Burgada, Phosphorus, Phosphorus Sulfur Silicon Relat.
Elem. 1994, 86, 217–228; f) T. Bailly, R. Burgada, Phosphorus,
Phosphorus Sulfur Silicon Relat. Elem. 1995, 101, 131–140; g) T.
Bailly, R. Burgada, C. R. Acad. Sci. Paris IIc, 1998, 241–245.
[1] a) A. E. V. Gorden, J. Xu, K. N. Raymond, P. Durbin, Chem. Rev.
2003, 103, 4207–4282; b) O. Anderson, Chem. Rev. 1999, 99, 2683–
2710; c) D. M. Taylor, G. N. Stradling, M. H. Henge-Napoli, Radiat.
Prot. Dosim. 2000, 87, 11–17; d) R. Wood, C. Sharp, P. Gourmelon,
B. Le Guen, G. N. Stradling, D. M. Taylor, M. H. Henge-Napoli,
Radiat. Prot. Dosim. 2000, 87, 51–57; e) P. W. Durbin, B. Kullgren,
K. N. Raymond, Radiat. Prot. Dosim. 1998, 79, 433–443; f) G. N.
Strandling, J. Alloys Comp. 1998, 271–273, 72–77.
3696
ꢁ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2005, 11, 3689 – 3697