H. Lin et al. / Bioorg. Med. Chem. Lett. 20 (2010) 679–683
683
Takata, D.; Luengo, J. I.; Kahana, J. A.; Zhang, S.; Robell, K. A.; Levy, D.; Kumar,
R.; Choudhry, A. E.; Schaber, M.; Lai, Z.; Brown, B. S.; Donovan, B. T.; Minthorn,
E. A.; Brwon, K. K.; Heerding, D. A. Bioorg. Med. Chem. Lett., doi:10.1016/
Acknowledgment
The authors thank Dr. Arthur Shu for preparing 7-azaindazole 6
and 4,7-diazaindazole 20 in large scale to support the SAR study.
18. Replacement of indazole with thienopyrazole did not reduce CYP450 3A4
inhibition (data not shown). For preparation of thienopyrazole derivatives, see:
Yamashita, D. S.; Lin, H.; Wang, W. PCT Int. Appl. WO2005085227, 203, 2005.
19. The 4,6-diazaindazole analog 2d was prepared similarly to the above
mentioned azaindazole analogs. A regio selective Stille coupling reaction of
2,4-dichloro-5-fluoropyrimidine and 1-ethoxyvinyltin followed by acidic
hydrolysis of the vinyl ether and subsequent cyclization with 1 equiv of
hydrazine hydrate afforded 5-chloro-4,6-diazaindazole 22. Two consecutive
microwave-assisted Suzuki coupling reactions of 22 with boronate ester 15
and 3-furanylboronate acid followed by acidic deprotection and reverse phase
HPLC purification furnished final target molecule 2d. Although this synthetic
route was suitable for preparing analogs in small scale, it was not optimized for
gram-scale synthesis due to low yields during formation of 22 and subsequent
References and notes
1. (a) Karaman, M. W.; Herrgard, S.; Treiber, D. K.; Gallant, P.; Atteridge, C. E.;
Campbell, B. T.; Chan, K. W.; Ciceri, P.; Davis, M. I.; Edeen, P. T.; Faraoni, R.;
Floyd, M.; Hunt, J. P.; Lockhart, D. J.; Milanov, Z. V.; Morrison, M. J.; Pallares, G.;
Patel, H. K.; Pritchard, S.; Wodicka, L. M.; Zarrinkar, P. P. Nat. Biotechnol. 2008,
26, 127; (b) Buchanan, S. G. Targets 2003, 2, 101.
2. (a) Lindsley, C. W.; Barnett, S. F.; Layton, M. E.; Bilodeau, M. T. Curr. Cancer Drug
Targets 2008, 8, 7; (b) Li, Q. Expert Opin. Ther. Patents 2007, 17, 1077; (c)
Bellacosa, A.; Kumar, C. C.; Cristofano, A. D.; Testa, J. R. Adv. Cancer Res. 2005, 94,
29.
3. Lin, H.; Yamashita, D.; Zeng, J.; Xie, R.; Wang, W.; Nidarmarthy S.; Luengo, J. I.;
Rhodes, N.; Knick, V. B.; Choudhry, A. E.; Lai, Z.; Minthorn, E. A.; Strum, S. L.;
Wood, E. R.; Elkins, P. A.; Concha, N. O.; Heerding, D. A. Bioorg. Med. Chem.
4. For details of in vitro kinase inhibition assays and cellular assays to measure
proliferation and inhibition of GSK3b phosphorylation, see: Rhodes, N.;
Heerding, D. A.; Duckett, D. R.; Eberwein, D. J.; Knick, V. B.; Lansing, T. J.;
McConnell, R. T.; Gilmer, T. M.; Zhang, S. Y.; Robell, K.; Kahana, J. A.; Geske, R.
S.; Kleymenova, E. V.; Choudhry, A. E.; Lai, Z. V.; Leber, J. D.; Minthorn, E. A.;
Strum, S. L.; Wood, E. R.; Huang, P. S.; Copeland, R. A.; Kumar, R. Cancer Res.
2008, 68, 2366.
Suzuki coupling reactions.
O
N
N
N
F
N
N
N
N
N
N
Cl
N
Cl
Cl
N
N
NH2
O
22
2d
SO2Ph
N
N
5. A compound that is less potent against HFF in proliferation assay is considered
to be less cytotoxic and to have a cleaner selectivity profile in general.
6. The cellular potency of compound 1 in BT474 proliferation assay shifted sixfold
to be less potent when protein was added.
N
Br
7. For easy comparison with the indazole, the pyrazolopyridine, pyrazolopyrazine
or pyrazolopyrimidine analogs are all called azaindazoles instead. For example,
4-azaindazole is 1H-pyrazolo[4,3-b]pyridine, 4,7-diazaindazole is 1H-
23
20. The 6-azaindazole analog 2e was prepared in a similar manner to the synthesis
of 2b except for the use of 5-bromo-6-azaindazole 23 as a coupling partner
with boronate ester 15.21 Basic conditions are required to deprotect the
benzenesulfonamide on the 6-azaindazole ring.
21. Verma, S. K.; LaFrance, L. V. Tetrahedron Lett. 2009, 50, 383.
22. Rusnak, D. W.; Lackey, K.; Affleck, K.; Wood, E. R.; Alligood, K. J.; Rhodes, N.;
Ketih, B. R.; Murray, D. M.; Knight, W. B.; Mullin, R. J.; Gilmer, T. M. Mol. Cancer
Ther. 2001, 1, 85.
pyrazolo[3,4-b]pyrazine
d]pyrimidine.
and
4,6-diazaindazole
is
1H-pyrazolo[4,3-
8. The 6-azaindazole was described in Abbott’s publication on 2,3-disubstituted
pyridine AKT inhibitors: Zhu, G.-D.; Gandhi, V. B.; Gong, J.; Thomas, S.; Woods,
K. W.; Song, X.; Li, T.; Diebold, R. B.; Luo, Y.; Liu, X.; Guan, R.; Klinghofer, V.;
Johnson, E. F.; Bouska, J.; Olson, A.; Marsh, K. C.; Stoll, V. S.; Mamo, M.;
Polakowski, J.; Campbell, T. J.; Martin, R. L.; Gintant, G. A.; Penning, T. D.; Li, Q.;
Rosenberg, S. H.; Giranda, V. L. J. Med. Chem. 2007, 50, 2990.
23. Electrostatic potential of the two hinge binders indicate that 4,7-diazaindazole
have weaker H-bond interaction to hinge (calculated using Density Function
9. Boronate ester 8 is very stable. It can be purified on silica gel column and stored
as a white solid.
**
Theory with B3LYP/6-31G basis set within JAQUAR, Version 7.5; Schrodinger,
10. Ishiyama, T.; Ishida, K.; Miyaura, N. Tetrahedron 2001, 57, 9813.
11. These two Suzuki reactions worked well under thermal conditions, but for
efficiency, microwave conditions were used often on mg to g scales.
12. Ohi, N.; Sato, N.; Soejima, M.; Doko, T.; Terauchi, T.; Naoe, Y.; Motoki, T. PCT Int.
Appl. WO2003101968, 2003.
LLC: New York, NY, 2008).
13. Transformation of 14 to its stannane reagent or boronate ester for coupling
with bromopyridine 9, was not successful.
14. 4,4,40,40,5,5,50,50-Octamethyl-2,2’-bi-1,3,2-dioxaborolane did not give the
corresponding boronate pinacolate under the same condition.
15. Boronate ester 15 can either be used as a crude reaction mixture or purified on
silica gel for storage.
16. Torr, J. E.; Large, J. M.; Horton, P. N.; Hursthouse, M. B.; McDonald, E.
Tetrahedron Lett. 2006, 47, 31.
17. Furan, indole and pyridine are all canonical CYP450 culprits. Modification of
indole and replacement of furan (compounds in Ref. 3, CYP450 data not shown)
did not result in improvement of CYP450 profile. Modification of pyridine is
addressed in a separate publication: Lin, H.; Yamashita, D. S.; Xie, R.; Zeng, J.;
Wang, W.; Leber, J.; Safonov, I. G.; Verma, S.; Li, M.; LaFrance, L; Venslavsky, J.;
24. Although the pharmacodynamic effect appeared to be inverted at the 12.5 and
25 mg/kg doses, the similar tumor concentrations at these two doses and the
error bars indicated a lack of significant difference in pharmacodynamic effect
between these two dose levels.