2464
J. S. Yadav et al.
LETTER
(10) Firouzabadi, H.; Iranpoor, N.; Amani, K. Synthesis 2003,
408.
(11) Kishore Kumar, G. D.; Baskaran, S. Synlett 2004, 1719.
(12) Typical Experimental Procedure.
Acknowledgment
SR, MSN and EB thank CSIR, New Delhi for the award of research
fellowship.
(a) Preparation of PMA/SiO2 Catalyst.
PMA–SiO2 catalyst was prepared following the published
References
procedure.11
(b) Preparation of Terminal Diols.
(1) (a) Greene, T. W.; Wuts, P. G. M. Protective Groups in
Organic Synthesis, 3rd ed.; John Wiley and Sons: New
York, 1999. (b) Kocienski, P. J. Protecting Groups; Thieme:
Stuttgart, 1994.
(2) Nicolaou, K. C.; Mitchel, H. J. Angew. Chem. Int. Ed. 2001,
40, 1576.
To a solution of glucose diacetonide (260 mg, 1 mmol) in
MeCN (2 mL) were added the 1 mol% PMA/SiO2 (0.01
mmol, based on PMA) followed by 40 mL of H2O, and the
reaction mixture was stirred at ambient temperature for 5–7
min. After completion of the reaction as indicated by TLC,
the solvent was removed under reduced pressure and the
residue was dissolved in THF (2 mL) and filtered. The
filtrate was concentrated under reduced pressure and
purified by column chromatography (100–200 silica gel
mesh) using hexane and EtOAc as solvent system to afford
the pure diols. The filtered catalyst was reused without prior
drying.
(3) (a) Fleet, G. W. J.; Smith, P. W. Tetrahedron Lett. 1985, 26,
1469. (b) Gerspacher, M.; Rapoport, H. J. Org. Chem. 1991,
56, 3700. (c) Yadav, J. S.; Chander, M. C.; Reddy, K. K.
Tetrahedron Lett. 1992, 33, 135. (d) Manna, S.; Viala, J.;
Yadagiri, P.; Falck, J. R. Tetrahedron Lett. 1986, 27, 2679.
(e) Park, K. H.; Yoon, Y. J.; Lee, S. G. Tetrahedron Lett.
1994, 35, 9737. (f) Leblanc, Y.; Fitzsimmons, B. J.; Adams,
J.; Perez, F.; Rokach, J. J. Org. Chem. 1986, 51, 789.
(g) Baurle, S.; Hoppen, S.; Koert, U. Angew. Chem. Int. Ed.
1999, 38, 1263. (h) Ichihara, A.; Ubukata, M.; Sakamura, S.
Tetrahedron Lett. 1977, 3473.
(4) (a) Kim, K. S.; Song, Y. H.; Lee, B. H.; Hahn, C. S. J. Org.
Chem. 1986, 51, 404. (b) Iwata, M.; Ohrui, H. Bull. Chem.
Soc. Jpn. 1981, 54, 2837. (c) Vijayasaradhi, S.; Singh, J.;
Aidhen, I. S. Synlett 2000, 110. (d) Xiao, X.; Bai, D. Synlett
2001, 535. (e) Swamy, N. R.; Venkateswarlu, Y.
Tetrahedron Lett. 2002, 43, 7549.
(5) (a) Kozhevnikov, I. V. Chem. Rev. 1998, 98, 171.
(b) Mizuno, N.; Misono, M. Chem. Rev. 1998, 98, 199.
(6) Izumi, Y.; Hasebe, R.; Urabe, K. J. Catal. 1983, 84, 402.
(7) Izumi, Y.; Urabe, K.; Onaka, M. Zeolite, Clay and
Heteropoly Acid in Organic Reactions; Kodansha/VCH:
Tokyo, 1992.
(8) Kozhevnikova, E. F.; Derouane, E. G.; Kozhevnikov, I. V.
Chem. Commun. 2002, 1178.
(9) Kaur, J.; Griffin, K.; Harrison, B.; Kozhevnikov, I. V. J.
Catal. 2002, 208, 448.
Spectral Data.
Entry b: [a]D +6 (c 1.76, CHCl3). 1H NMR (200 MHz,
CDCl3): d = 7.38 (s, 5 H), 5.75 (d, J = 3.8 Hz, 1 H), 4.64 (dd,
J1,2 = J2,3 = 3.7 Hz, 1 H), 4.54 (s, 2 H), 3.40–4.00 (m, 6 H),
2.00–2.40 (m, 1 H), 1.48 (s, 3 H), 1.29 (s, 3 H). MS–FAB:
m/z = 325.
Entry c: [a]D +2.8 (c 1, MeOH). 1H NMR (200 MHz,
CDCl3): d = 7.78 (d, J = 8.0 Hz, 2 H), 7.38 (d, J = 8.0 Hz, 2
H), 4.83 (d, J = 7.0 Hz, 1 H), 4.15 (d, J = 5.5 Hz, 1 H), 4.05
(d, J = 5.5 Hz, 1 H), 3.90 (d, J = 5.0 Hz, 1 H), 3.52–3.70 (m,
2 H), 2.60 (br s, 1 H), 2.50 (s, 3 H), 2.00 (br s, 1 H), 1.50 (s,
3 H), 1.32 (s, 3 H). MS–FAB: m/z = 389 [M+ + 1].
Entry d: [a]D –16.2 (c 0.4, CHCl3). 1H NMR (200 MHz,
CDCl3): d = 7.35–7.24 (m, 5 H), 6.98–6.82 (m, 1 H), 5.85 (d,
J = 15.6 Hz, 1 H), 4.69 (d, J = 11.1 Hz, 1 H), 4.46 (d,
J = 11.1 Hz, 1 H), 4.18 (q, J = 7.4 Hz, 2 H), 3.86–3.78 (m, 2
H), 3.50 (dd, J1,2 = 11.1, J2,3 = 5.9 Hz, 1 H), 3.35 (dd,
J1,2 = 11.1 Hz, J2,3 = 5.9 Hz, 1 H), 2.52 (t, J = 6.7 Hz, 2 H),
1.58–1.43 (m, 2 H), 1.28 (t, J = 7.4 Hz, 3 H). MS–FAB:
m/z = 331 [M+ + 23], 309 [M+ + 1].
Synlett 2005, No. 16, 2461–2464 © Thieme Stuttgart · New York